Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Symmetry-Reduction Enhanced One-Dimensional Polarization-Sensitive Photodetectors for Multi-Functional Applications

Wei Gan^{†a}, Chentao Zhang^{†a}, Guanghui Peng^a, Liqiang Xu^a, Zihao Tong^d, Zhuxin Zhang^d, Chuanqiang Wu^{*a}, Yang Zhou^{*b}, Zhen Wang^{*c}

- Institute of Physical Science and Information Technology and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China
- b. Songshan Lake Materials Laboratory, Dongguan 523808, China
- c. State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
- d. Stony Brook Institute at Anhui University, Anhui University, Hefei 230039, China

Keywords: one dimensional (1D) van der Waals (vdW) material, broadband photoresponse, polarization sensitivity, convolutional processing, multiplexing optical communications

*Email: wucq@ahu.edu.cn, zhouyang@sslab.org.cn, wangzhen@mail.sitp.ac.cn

Figure S1 (a) XRD pattern of the as-synthesized Nb₂Pd_{0.71}Se₅ single crystal. (b) SEM of the Nb₂Pd_{0.71}Se₅ single crystal. (c) EDS spectrum of the Nb₂Pd_{0.71}Se₅ single crystal.
(d) SEM image, (e) Nb element mapping, (f) Pd element mapping, and (g) Se element mapping of the Nb₂Pd_{0.71}Se₅ single crystal.

Figure S2 The atomic force microscope (AFM) height profile of the as-exfoliated $Nb_2Pd_{0.71}Se_5$, showing the diameter of ~ 45 nm.

Figure S3 Photoresponse of the 1D vdW Nb₂Pd_{0.71}Se₅ photodetector under 520 nm laser irradiation with various power densities ranging from 52 to 1325 nW/ μ m² and 1 V bias voltage. (a) Linear output characteristics of the device under illumination with various power densities. (b) Responsivity (*R*) and Specific detectivity (*D**), (c) External quantum efficiency (*EQE*) of the device as functions of the laser power density.

Figure S4 Photoresponse of the 1D vdW Nb₂Pd_{0.71}Se₅ photodetector under 850 nm laser irradiation with various power densities ranging from 101.89 to 2254 nW/ μ m² and 1 V bias voltage. (a) Linear output characteristics of the device under illumination with various power densities. (b) Responsivity (*R*) and Specific detectivity (*D**), (c) External quantum efficiency (*EQE*) of the device as functions of the laser power density.

Figure S5 Photoresponse of the 1D vdW Nb₂Pd_{0.71}Se₅ photodetector under 1064 nm laser irradiation with various power densities ranging from 0.45 to 32.45 μ W/ μ m² and 1 V bias voltage. (a) Linear output characteristics of the device under illumination with various power densities. (b) Responsivity (*R*) and Specific detectivity (*D**), (c) External quantum efficiency (*EQE*) of the device as functions of the laser power density.

Figure S6 (a) Photocurrent as a function of power density at different gate voltages ranging from 0 V to -60 V. (b) Gate dependence of the power law coefficient (α) extracted from the fitting in (a).

Figure S7 Experimental setup of the polarization imaging system.

Figure S8 Information transmission of 0100000101001000 *via* merely (a) light intensity or (b) light polarization state, respectively. The "High" and "Low" represent the light intensity. The \leftrightarrow and \updownarrow represent the parallel and perpendicular polarization states, respectively.

Figure S9 Polarization-sensitive photoresponse captured under 638 nm laser illumination, with the polarization angle systematically adjusted from 0° to 360°.

Structure	<i>R</i> (A/W)	Rise/decay time	Anisotropy ratio	Refs
TaIrTe ₄	20 μA/W @ 10.6 μm	τ: 27 μs	1.88 @ 10.6µm	1
Ta ₂ NiSe ₅	44 A/W @ 1064 nm	τ _r : 98 ms τ _d : 82 ms	3.24 @ 1064 nm	2
PdPS	1000 A/W @ 532 nm	τ _r : 1.4 ms τ _d : 1.2 ms	3.7 @ 808 nm	3
Sb_2S_3	0.34 A/W @ 450 nm	τ _r : 470 μs τ _d : 680 μs	2.54 @ 638 nm	4
In_2SnS_4	93.4 mA/W @ 532 nm	τ _r : 20 μs τ _d : 20 μs	1.7 @ 650 nm	5
Bi ₂ S ₃	673.3 A/W @ 532 nm	$ au_{r}$: 1 ms $ au_{d}$: 4.5 ms	2.4 @ 405 nm	6
KNb ₃ O ₈	30 A/W @ 254 nm	τ _r : 2.5 s τ _d : 1.8 s	1.62 @ 254 nm	7
SbBiS ₃	7.8 A/W @ 532 nm	τ _r : 10 μs τ _d : 94 μs	1.12 @ 808 nm	8
CrPS ₄	137 nA/W @ 405 nm	$ au_r: 2 s$ $ au_d: 2 s$	1.33 @ 405 nm	9
GaPS ₄	4.89 A/W @ 254 nm	τ _r : 110 ms τ _d : 50 ms	1.85 @ 254nm	10
Nb ₂ Pd _{0.71} Se ₅	1590 A/W @ 638 nm	τ _r : 2.5 μs τ _d : 2.8 μs	14.4 @ 638 nm	This work

Table S1 Comparison of the photoresponse paramaters and anisotropic ratio of Nb₂Pd_{0.71}Se₅ photodetector with previous reports.

Note S1 The key parameters of photodetectors.

The photoresponse performance of the typical photodetectors are normally evaluated by responsivity (*R*), detectivity (D^*), and external quantum efficiency (*EQE*), which can be calculated through the following equations:¹¹

$$I_{\rm ph} = I_{\rm light} - I_{\rm dark}$$

 $R = I_{\rm ph}/PS$
 $D^* = RS^{1/2}/(2eI_{\rm dark})^{1/2}$
 $EQE = hcR/e\lambda$

where I_{ph} , I_{light} , P, S, e, I_{dark} , h, c, and λ represent the photocurrent, current under illumination, incident light power density, functional area, electron charge, dark current, Planck constant, light velocity, and incident light wavelength, respectively.

References

1 Lai, J.; Liu, Y.; Ma, J.; Zhuo, X.; Peng, Y.; Lu, W.; Liu, Z.; Chen, J.; Sun, D., *ACS Nano* 2018, **12**, 4055-4061.

2 Qiao, J.; Feng, F.; Wang, Z.; Shen, M.; Zhang, G.; Yuan, X.; Somekh, M. G., *ACS Appl. Mater. Interfaces* 2021, **13**, 17948-17956.

3 Wang, X.; Xiong, T.; Zhao, K.; Zhou, Z.; Xin, K.; Deng, H.-X.; Kang, J.; Yang, J.; Liu, Y.-Y.; Wei, Z., *Adv. Mater.* 2022, **34**, 2107206.

Zhao, K.; Yang, J.; Zhong, M.; Gao, Q.; Wang, Y.; Wang, X.; Shen, W.; Hu, C.;
Wang, K.; Shen, G.; Li, M.; Wang, J.; Hu, W.; Wei, Z., *Adv. Funct. Mater.* 2021, **31**, 2006601.

5 Zuo, N.; Nie, A.; Hu, C.; Shen, W.; Jin, B.; Hu, X.; Liu, Z.; Zhou, X.; Zhai, T., *Small* 2021, **17**, 2008078.

Yi, H.; Ma, C.; Wang, W.; Liang, H.; Cui, R.; Cao, W.; Yang, H.; Ma, Y.; Huang,
W.; Zheng, Z.; Zou, Y.; Deng, Z.; Yao, J.; Yang, G., *Mater. Horizons* 2023, 10, 3369-3381.

Ping, Y.; Long, H.; Liu, H.; Chen, C.; Zhang, N.; Jing, H.; Lu, J.; Zhao, Y.; Yang,
Z.; Li, W.; Ma, F.; Fang, X.; Wei, Z.; Xu, H., *Adv. Funct. Mater.* 2022, 32, 2111673.

8 Yang, W.; Xiong, T.; Liu, Y.-Y.; Yang, J.; Xu, Q.; Wei, Z., Small Structures 2022,
3, 2200061.

Zhang, H.; Li, Y.; Hu, X.; Xu, J.; Chen, L.; Li, G.; Yin, S.; Chen, J.; Tan, C.; Kan,
X.; Li, L., *Appl. Phys. Lett.* 2021, **119**.

10 Yan, Y.; Yang, J.; Du, J.; Zhang, X.; Liu, Y.-Y.; Xia, C.; Wei, Z., *Adv. Mater.* 2021, **33**, 2008761.

Chen, J.; Zhang, Z.; Ma, Y.; Feng, J.; Xie, X.; Wang, X.; Jian, A.; Li, Y.; Li, Z.;
Guo, H.; Zhu, Y.; Cui, Q.; Shi, Z.; Xu, C., *Nano Res.* 2023, 16, 7851-7857.