Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Single-atom catalyst-integrated with semiconductors for constructing

a dual-potential electrochemiluminescence sensor for intracellular

H₂O₂ detection

Yiran Ying,^{#,a} Tianyou Chen,^{#,a} Arzugul Ablimit,^b Chan Zhang,^b Bing Sun^a, Jing Wu^{*,a} and Wu Liu^{*,c}

^aSchool of Science, China University of Geosciences (Beijing), Beijing 100083,

China

^bBeijing Engineering and Technology Research Center of Food Additives and Beijing

Advanced Innovation Center for Food Nutrition and Human Health, Beijing

Technology and Business University, Beijing 100048, China

^cSchool of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China

*Corresponding authors: Jing Wu (Email: wujing@cugb.edu.cn), Wu Liu (Email:

wuliu@sdu.edu.cn)

Table of Contents

- 1. Experimental Procedures
- 2. Supplementary Figures
- 3. Supplementary Table

1. Experimental Procedures

1.1 Reagents and chemicals

Melamine (99%), cobalt chloride hexahydrate (CoCl₂·6H₂O, 99.99%), phosphate buffered saline (PBS), molybdenum sulfide (MoS₂, 99%), thiourea (NH₂CSNH₂, 99%), Nafion-117 (5wt.%), glutathione (GSH, 99%), L (+)-cysteine (Cys, 99%), dopamine hydrochloride (DA, 99%) and methyl alcohol (HPLC, \geq 99.9%) were purchased from innochem Co. Ltd (Beijing, China). Iron chloride hexahydrate (FeCl₃·6H₂O, 98%) was purchased from Alfa Aesar (China) Chemical Co., Ltd (Beijing, China). Luminol, glucose (Glu, 99%), *L*-ascorbic acid (AA), uric acid (UA, 99%) and *p*-benzoquinone (BQ) were purchased from Aladdin biochemical technology (Shanghai, China). 5,5dimethyl-1-pyrroline N-oxide (DMPO) was obtained from Tokyo Chemical Industry Co., Ltd (Shanghai, China). Hydrogen peroxide (H₂O₂, 30% aqueous solution), trypsin-EDTA, acetone and ethanol were brought from Sinopharm Chemical Reagent Co., Ltd (Beijing, China).

1.2 Apparatus

Scanning electron microscopy (SEM) was performed on a JSM-7900 scanning electron microscope (JEOL, Tokyo, Japan) with an accelerating voltage of 3 kV. High resolution transmission electron microscopy (HRTEM) was performed on a JEOL-1400 scanning electron microscope (JEOL, Tokyo, Japan). The aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (AC-HAADF-STEM) was performed by a Titan G2 600 (FEI, United States). X-ray photoelectron spectra (XPS) were recorded on an X-ray photoelectron spectrometer with Al-K α X-ray (hv = 1486.6 eV) radiation (ThermoFisherEscaLab Xi+, MA, USA). X-ray diffractometer (D8 advance, Bruker, Germany) with Cu K α radiation (λ = 1.5418 Å) was used to investigate the crystal structures of the samples by collecting X-ray powder diffraction (XRD) spectra with a scan rate of 0.05° (2 θ) s⁻¹ in the 2 θ range of 5-80°. Electronic paramagnetic resonance (EPR) spectra of \cdot O₂⁻ and \cdot OH radicals were measured by a Bruker E500 spectrometer under light irradiation. The X-ray absorption fine structure spectra (Co K-edge) were collected at BL14W1 station in Shanghai Synchrotron

Radiation Facility (SSRF). Attenuated-total-reflection Fourier transform infrared spectroscopy (ATR-FTIR) analysis was performed using a Nicolet iS50 FTIR spectrometer (Thermo). Cyclic voltammetry (CV) was measured on a CHI 760e electrochemical workstation (Chenghua Co., Ltd., Shanghai, China) by a three-electrode electrochemical cell system which was composed of a modified glass carbon electrode (GCE) (5 mm diameter) as the working electrode, an Ag/Ag⁺ electrode as the reference electrode, and a Pt wire (1 mm diameter) as the counter electrode. ECL was performed with a homemade ECL analyzer which contained a CHI 760e electrochemical workstation and an ultraweak chemiluminescence (CL) analyzer (IFFM-E, Xi'an Remex Analytical Instrument Co., Ltd., China). The electrochemical workstation equipped with the above three-electrode system was utilized to apply the designed voltage. CL analyzer was utilized to take ECL curves.

1.3 X-ray absorption fine structure (XAFS) Measurements

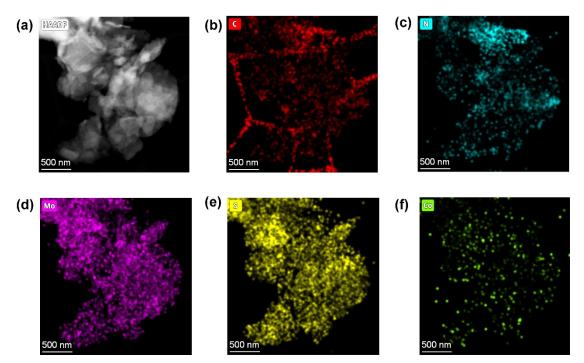
Co K-edge XAFS analyses were performed with Si(111) crystal monochromators at the BL14W Beam line at the Shanghai Synchrotron Radiation Facility (SSRF) (Shanghai, China). Before the analysis at the beamline, samples were placed into aluminum sample holders and sealed using Kapton tape film. The XAFS spectra were recorded at room temperature using a 4-channel Silicon Drift Detector (SDD) Bruker 5040. Co K-edge extended X-ray absorption fine structure (EXAFS) spectra were recorded in transmission mode. Negligible changes in the line-shape and peak position of Co K-edge XANES spectra were observed between two scans taken for a specific sample. The XAFS spectra of these standard samples were recorded in transmission mode. The spectra were processed and analyzed by the software codes Athena.

1.4 Density functional theory (DFT) method

All the DFT calculations were conducted based on the Vienna Ab-inito Simulation Package (VASP). The exchange-correlation effects were described by the Perdew-Burke-Ernzerhof (PBE) functional within the generalized gradient approximation (GGA) method. The core-valence interactions were accounted by the projected augmented wave (PAW) method. The energy cutoff for plane wave expansions was set to 400 eV, and the $2 \times 2 \times 1$ Monkhorst-Pack grid k-points were selected to sample the Brillouin zone integration. The structural optimization was completed for energy and force convergence set at 1.0×10^{-4} eV and 0.05 eV Å⁻¹, respectively.

The Gibbs free energy change (ΔG) of each step is calculated using the following formula:

$$\Delta G = \Delta E + \Delta Z P E - T \Delta S$$


where ΔE is the electronic energy difference directly obtained from DFT calculations, ΔZPE is the zero point energy difference, *T* is the room temperature (298.15 K) and ΔS is the entropy change. ZPE could be obtained after frequency calculation [1]:

$$ZPE = \frac{1}{2} \sum hvi$$

And the TS values of adsorbed species are calculated according to the vibrational frequencies [2]:

$$TS = k_B T \left[\sum_{k} ln^{\frac{1}{1-e^{-hv/k_B T}}} \right] + \sum_{k} \frac{hv}{k_B T} \frac{1}{(e^{hv/k_B T} - 1)} + 1 \right]$$

2. Supplementary Figures

Figure S1. (a) Aberration-corrected high-angle annular dark field scanning transmission electron microscopy (AC-HAADF-STEM) image of MoS₂/Co-C₃N₄ and elemental mapping images: C (b), N (c), Mo (d), S (e), and Co (f).

To analyze the crystalline phase of the prepared catalyst, X-ray diffraction (XRD) measurements were performed. As expected, no new characteristic peaks were observed, except for the 13.0° and 27.4° diffraction peaks attributed to the (100) and (002) crystal faces of g-C₃N₄ (Figure S2a), further confirming that the metal atoms did not agglomerate. The XRD patterns of MoS₂/Co-C₃N₄, MoS₂/Fe-C₃N₄, MoS₂ and g-C₃N₄ were shown (Figure S2b). The characteristic peaks of the (100) and (002) crystal faces of g-C₃N₄ and the characteristic peaks of the (002), (100), (103), and (110) crystal faces of MoS₂ were observed in the composite materials. Additionally, no new peaks were formed, indicating the successful combination of MoS₂ and g-C₃N₄.

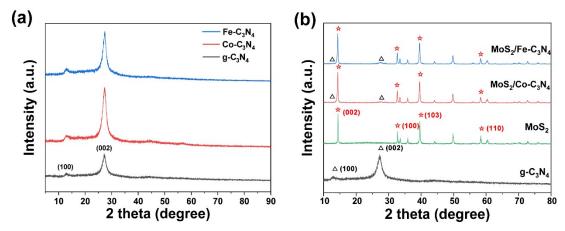
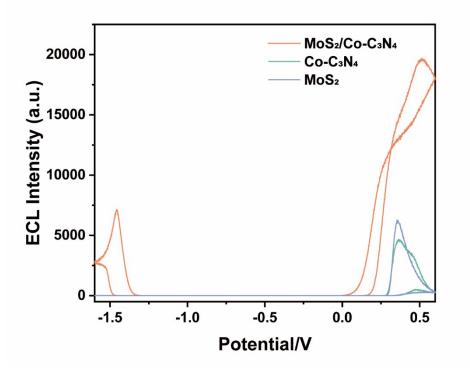



Figure S2. (a) XRD patterns of Co-C₃N₄, Fe-C₃N₄, and g-C₃N₄. (b) XRD patterns of MoS₂/Fe-C₃N₄, MoS₂/Co-C₃N₄, MoS₂, and g-C₃N₄.

Figure S3. ECL intensity of MoS₂/Co-C₃N₄-modified, MoS₂-modified, and Co-C₃N₄-modified GCE in the luminol-H₂O₂ system (PMT voltage = 900 V, CV parameters: potential range from – 1.6 V to 0.6 V, scan rate of 50 mV s⁻¹).

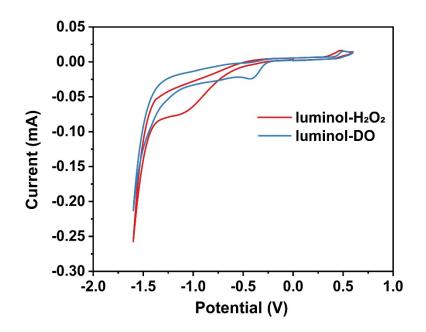


Figure S4. Comparative CV curves of MoS₂/Co-C₃N₄ in the luminol-H₂O₂ system and the luminol-DO system.

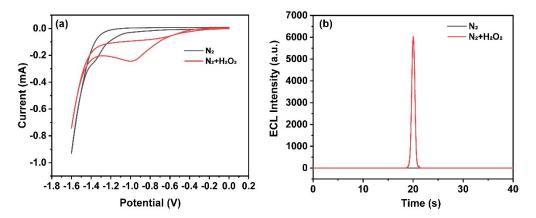
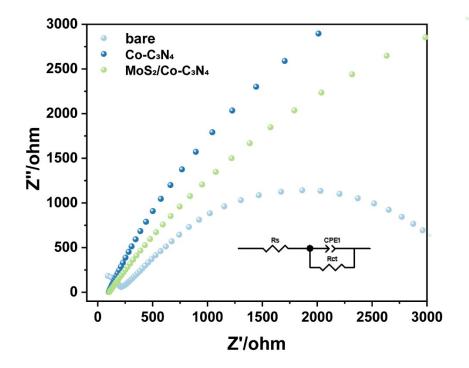



Figure S5. CV curves (a) and ECL intensity (b) of $MoS_2/Co-C_3N_4$ -luminol system in N₂-saturated PBS buffer solution with or without H₂O₂.

Figure S6. Electrochemical impedance spectra (EIS) of the bare electrode, Co-C₃N₄, and MoS₂/Co-C₃N₄ recorded in 5 mM Fe[(CN)₆]^{3-/4-} solution. Inset: Corresponding equivalent circuit used for fitting. Rs: solution resistance; Rct: charge transfer resistance; CPE: constant phase element.

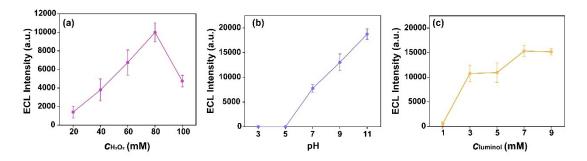
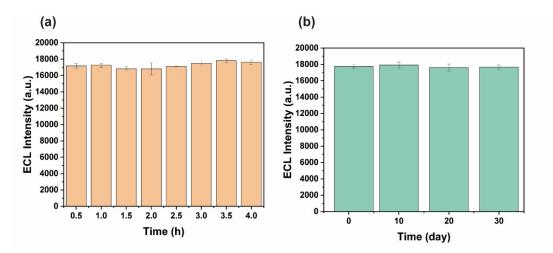
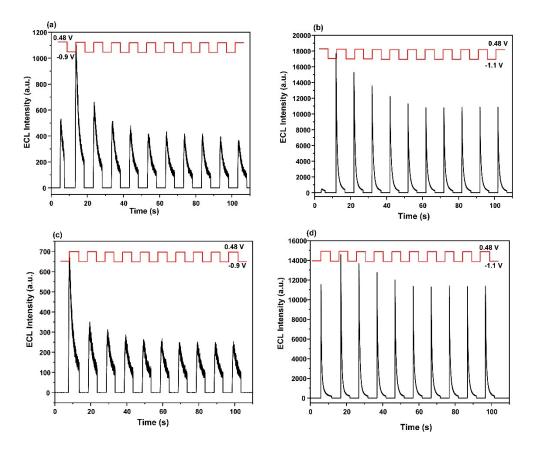




Figure S7. Optimization of reagent concentrations for MoS₂/Co-C₃N₄-luminol-H₂O₂ ECL system: (a) H₂O₂ concentration, (b) pH value, and (c) luminol concentration.

Figure S8. Intraday (a) and interday (b) data of anodic ECL intensity of MoS₂/Co-C₃N₄ under optimal conditions.

Figure S9. Transient ECL of MoS₂/Co-C₃N₄-luminol-H₂O₂ system under stepwise pulse (SP) conditions within the potential ranges of $0.48 \sim -0.9$ V (a), $0.48 \sim -1.1$ V (b), $-0.9 \sim 0.48$ V (c),

and $-1.1 \sim 0.48~\mathrm{V}$ (d). The red curves represent the applied potential steps.

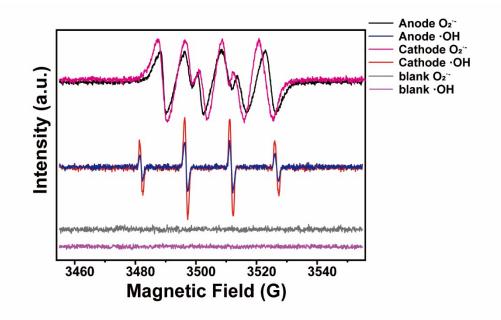


Figure S10. EPR spectra of $MoS_2/Co-C_3N_4$ and control in H_2O_2 .

3. Supplementary Table

Shell	N ^a	R (Å) ^b	$\sigma^2(\text{\AA}^2)^c$	$\Delta E_0 (eV)^d$	R factor
Co-N	2.3 (2)	1.9	0.014	0.9	0.026
Co-S	0.7 (1)	2.2	0.002	-9.8	0.026

Table S1. Local structure parameters around Co estimated by EXAFS analysis of MoS₂/Co-C₃N₄.

^aN = coordination number; ^bR = distance between absorber and backscatter atoms; $^{c}\sigma^{2}$ = Debye-Waller factor; $^{d}\Delta E_{0}$

= energy shift; R-space fit.

Time	Measurement	Measurement	Measurement	Mean	Relative Standard
(h)	1	2	3	Ivitan	Deviation (RSD)
0.5	17038	16988	17512	17179.33	1.61%
1.0	17529	17032	17223	17261.33	1.50%
1.5	16778	16587	17121	16828.67	1.64%
2.0	16216	16581	17652	16816.33	4.39%
2.5	17073	17111	17125	17103.00	0.61%
3.0	17332	17256	17895	17494.33	1.98%
3.5	18021	17850	17556	17809.00	1.34%
4.0	17317	17802	17752	17623.67	1.43%

Table S2. Intra-day ECL intensity measurements of MoS₂/Co-C₃N₄.

Paired t-tests were performed between adjacent time points. The critical t-value at df = 2, $\alpha = 0.05$ (two-tailed) is ±4.303. Results are as follows:

Comparison	Mean	SD of Difference	t valua	n valua	Significance (a =
	Difference (D)	(SD)	t-value	p-value	0.05)
0.5 h vs 1.0 h	82.00	390.98	0.36	0.748	Not significant
1.0 h vs 1.5 h	-432.66	367.21	-2.04	0.178	Not significant
1.5 h vs 2.0 h	-12.34	738.47	-0.03	0.980	Not significant
2.0 h vs 2.5 h	286.67	738.47	0.67	0.564	Not significant
2.5 h vs 3.0 h	391.33	345.56	1.96	0.186	Not significant
3.0 h vs 3.5 h	314.67	238.25	2.29	0.148	Not significant
3.5 h vs 4.0 h	-185.33	252.19	-2.27	0.150	Not significant

Table S3. Paired *t*-test results for intra-day ECL intensity of MoS₂/Co-C₃N₄.

Table S4. Inter-day ECL intensity measurements of MoS₂/Co-C₃N₄.

•	1	1	•		
1	17886	17514	17850	17750.00	200.92
10	18271	17555	17952	17926.00	366.68
20	17175	17653	18031	17619.67	430.10
30	17371	17811	17852	17678.00	248.07

Day Replicate 1 Replicate 2 Replicate 3 Mean Standard Deviation (SD)

Paired t-tests were applied to adjacent day-pairs. The results are as follows:

Table S5. Paired *t*-test results for inter-day ECL intensity of MoS₂/Co-C₃N₄.

	Maan Difference	SD of			Significance
Comparison	Mean Difference	Difference	t-value	p-value	Significance
	(D)	(SD)			$(\alpha = 0.05)$
Day 1 vs Day 10	176.00	366.68	0.83	0.488	Not
					significant
Day 10 vs Day	20(22	420.10	1.00	0.221	Not
20	-306.33	430.10	-1.23	0.321	significant
Day 20 vs Day	59.22	249.07	0.41	0.715	Not
30	58.33	248.07	0.41	0.715	significant

Table S6. Recovery results and t-test analysis for MoS₂/Co-C₃N₄ toward spiked H₂O₂

Spiked	%Recovery	%RSD	t-value	p-value	Significance (α =	
Concentration (nM)	(Mean)	70KSD			0.05)	
1	94.0%	4.87%	-2.27	0.15	Not significant	
10	105.1%	9.85%	0.77	0.51	Not significant	
100	97.13%	5.05%	-1.01	0.42	Not significant	

concentrations (1, 10, and 100 nM).

The critical t-value at $\alpha = 0.05$ (two-tailed) is ± 4.303 .

References

- [1] J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard,
 H. Jónsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode,
 J. Phys. Chem. B 108 (2004) 17886-17892
- [2] L.I. Bendavid, E.A. Carter, CO₂ adsorption on Cu₂O(111): A DFT+U and DFT-D study, J. Phys. Chem. C 117 (2013) 26048-26059.