Supplementary Material

Tailoring Dielectric Performance via Dipole Density and Hydrogen-Bonding Interaction Towards High-Temperature Capacitive Energy Storage Polymer

Feng Zhou, Chong Tian, Lei Huang, Yunfeng Jiang, Fuqi Zhao, Na Yang, Dandan Yun, Xufu Cai

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China. E-mail: caixf2008@scu.edu.cn

Fig S1. $Tan(\delta)$ curves of PEI/MBPU-co-MPD₂₀ blends in DMA test.

Fig S2. Dielectric constant and loss of PEI/MBPU-co-MPD₂₀ blends at different mass ratios at 150 °C (a-3:1, b-2:1, c-1:2, d-1:3)

Fig S3. Comparison of FT-IR spectra and fractions of free C=O of PEI (a), MBPU-co-MPD₂₀ (g) and PEI/co-polyurea blends with different PEI:MBPU-co-MPD₂₀ ratios of 3:1 (b), 2:1 (c), 1:1 (d), 1:2 (e) and 1:3 (f).

Fig S4. *D-E* loops of PEI, MBPU-co-MPD₂₀ and the 1:1 blend dielectric films at room temperature and 150 °C.

Fig S5. The charge-discharge efficiency of PEI, MBPU-co-MPD₂₀ and the 1:1 blend dielectric films (a) and leakage current density of PEI, MBPU-co-MPD₂₀ and the 1:1 blend dielectric films at 150°C. Surface electrostatic potential distribution (C).

	0		11
Sample	M _n	$\mathbf{M}_{\mathbf{w}}$	Polydispersity (PDI)
MBPU-co-MPD ₀	47663	82314	1.7270
MBPU-co-MPD ₅	37582	67264	1.7898
MBPU-co-MPD ₁₀	38974	68532	1.7584
MBPU-co-MPD ₂₀	33938	60781	1.7910
MBPU-co-MPD ₃₀	5871	12238	2.0843
MBPU-co-MPD ₄₀	4612	9736	2.1108
MBPU-co-MPD ₅₀	3832	8293	2.1642

Table S1. Molecular weights and distributions of the MBPU-co-MPD_n.

Table S2. Summary of glass Transition temperature (T_g) and dielectric property characterizationfor MBPU-co-MPD_n at ambient temperature.

Sample	$T_{\rm g}$ (°C)	ε _r (1 kHz)	Tanð (%, 1 kHz)	$E_{\rm b}({\rm MV/m})$
MBPU-co-MPD ₀	215.2	4.19	1.36	685
MBPU-co-MPD ₅	212.7	4.73	1.49	640
MBPU-co-MPD ₁₀	213.1	4.99	1.44	592
MBPU-co-MPD ₂₀	211.4	5.13	1.32	620
MBPU-co-MPD ₃₀	200.1	3.60	2.62	287