Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

Decoupling Electrical Conductivity and Seebeck Coefficient via Isoelectronic Alloying in 9-4-9-type $Ca_{9-\nu}Eu_{\nu}Zn_{4,7}Sb_{9}$ ($0 \le y \le 5.0$) Zintl Phase

Wenhua Xue, ^{a,b} Chen Chen, ^c Pengfei Nan, ^d Youwen Long, ^a Binghui Ge, ^{*d} Qian Zhang ^{*b} and Yumei Wang ^{*ae}

- ^a Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- ^b School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
- ^c School of Physical Sciences, Great Bay University, Dongguan, 523000, China
- ^d Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
- ^e Beijing Branch of Songshan Lake Materials Laboratory, Beijing 100190, China

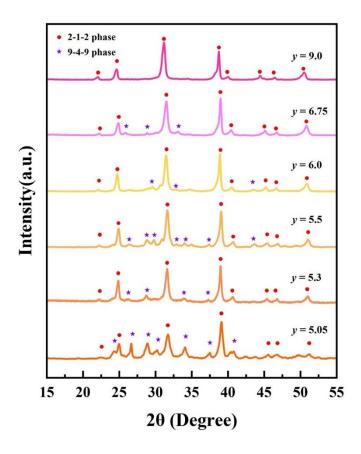


Fig. S1. The XRD patterns for the $Ca_{9-y}Eu_yZn_{4.7}Sb_9$ (y = 5.05, 5.3, 5.5, 6.0, 6.75) and $Ca_{9-y}Eu_yZn_{4.41}Sb_9$ (y = 9.0) samples.

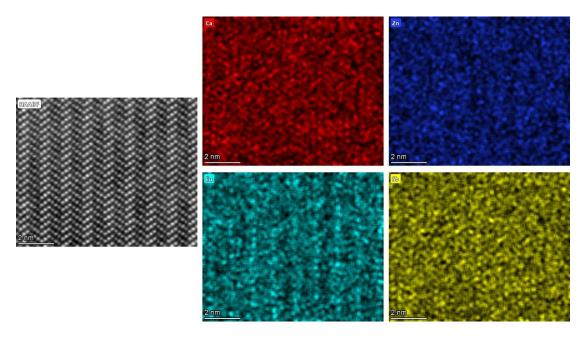


Fig. S2. The EDS mapping of the "intergrowth" structure in $Ca_{9-y}Eu_yZn_{4.7}Sb_9$ (y = 5.05).

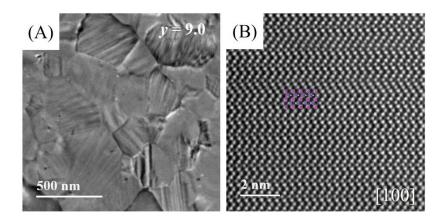


Fig. S3. (a) Low-magnification TEM image and (b) corresponding HAADF-STEM image for $Ca_{9-y}Eu_yZn_{4.41}Sb_9$ (y = 9.0).