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1. Additional microscopy characterization

Figure S1 a) high-angle annular dark-field scanning transmission electron microscopy (HAADF)
of the La ggFe)93Cu 05Pdg.0205 perovskite; b) elemental mapping of Fe; ¢) elemental mapping of

Cu; d) elemental mapping of Pd; e) elemental mapping of La; f) superimposition of the elemental
mapping of Pd and La.



2. Additional XPS data
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Figure S2. (a) XPS survey spectrum and (b) narrow scan of the C 1s core level.



Figure S3. XPS narrow scan of the O 1s core level.



Table S1. Semiquantitative determination of elements by XPS.

Atomic percent (%)

0 65.80
La 17.91
Fe 14.59
Cu 1.29
Pd 0.41
La+Fe+ Cu+Pd |34.20
Fe+ Cu+ Pd 16.29
Ratios

La/(Fe+Cu+Pd) | 1.10
Fe / (Fe + Cu + Pd) | 0.90
Cu/(Fe + Cu+ Pd)| 0.08
Pd/ (Fe + Cu+Pd) | 0.03

O/La 3.67
La/Fe 1.23
Cu/Pd 3.15
Cu/Fe 0.09

Pd/Fe 0.03




3. Oxygen Evolution Reaction at Lag gsFeg93Cug ¢sPd020;3 electrodes

Concerning the OER, microkinetic analysis has been proposed based on the mechanism Sl
(equations S1 to S3). Based on these equations, dual Tafel slopes are observed when equation S3
represents the rds and certain conditions for the coverage of intermediates are met, i.e., when
Oon and 0o ~ 0, simulation a 30 mV/ dec is predicted, while when Oon~1 and 0o ~ 0, a 60
mV/dec slope should appear. On the other hand, 40 mV/dec slope appears when reaction S2 is the

rds. Finally, 120 mV/dec slop exists when reaction S1 is the rds.

Mechanism S1

M+H,0=MOH+H" +e" (S1)
MOH=MO+H" +e" (S2)
2MO =0, +2M (S3)

In this particular case, the experimental Tafel slope was 104 mV/dec, which is close to 120
mV/dec, thus suggesting that the initial water discharge to form the OH- intermediate is the rds for

this transformation. Other Tafel slopes for similar systems are summarized in Table S2.



Table S2. Succinct compendium of Tafel slopes for the HER and the OER at various materials.

Material Tafel slope Conditions Reference
LnBaCo0,0s5.5* 60 [1]
NiCo,04 (nanoneedle) 292
KOH 1M [2]

NiCo,04 (nanosheet) 393
SrVO, 235

70 (low 1) NaOH 1 M [3]
LaCoO3

135 (high 1)

* Ln = Pr, Sm, Gd, Ho.




4. Benchmark comparison of mass activities of MeOH electrocatalysts

Table S3. Comparison of mass activities for different MeOH electrocatalysts.

Material Mass activity Reference
Lao'88F60.93C110'05Pd().0203 1041 mA / mg This work
Pt/C 441 mA / mg-Pt [4]
Pt/RuQO, 6766 mA / mg-Pt [4]
Pt;Zn/carbon cloth 5890 mA / mg-Pt [5]
Pt,Zn/carbon cloth 3920 mA mg-Pt [5]
PtyZn/carbon cloth 2530 mA / mg-Pt [5]
Pt/carbon cloth 1490 mA / mg-Pt [5]
Pt—Pd catalyst 2235.4 mA / mg-metals [6]
Pt—Pt 1124.1 mA / mg-metals [6]
Pd—Pd 837.7 mA / mg-metals [6]
single-nickel-atom-alloyed platinum 4400 mA / mg-(Pt+Ni) [7]

hexagonal nanocrystals/porous
graphdiyne (NiPtSAA/GDY)

3.5% Pt/mesoporous-WC 1851 mA/mg-Pt [8]
PINT 88 mA / mg [9]
Rh,P-Pt/C 460 mA / mg-noble metal [10]
Pt;Rh nanoclusters 1392.5 mA / mg [11]
COggPt6Ru6/NC 280 mA / mg-Pt+Ru [12]
Pt(10%)—Au hollow nanourchin (HNU) 0.80 mA / pug-Pt [13]
Nanoporous palladium (NPPd) 262 mA / mg [14]
Pt;TesCo, NRs/C 1470 mA / mg-Pt [15]
Pt52F€11C010Ni11CU.10Ag8 462-504 mA / mg [16]
PtCo nanocrosses 692 mA / mg-Pt [17]
PtRuCu/C 1350 mA / mg-Pt [18]
Pt NPs 70.1 mA / mg [19]
Pt NFs 87.7 mA / mg [19]
bimetallic PtRu catalyst supported on 400 mA / mg-Pt [20]
carbon black (20 wt% Pt, 10 wt% Ru,

Johnson Matthey)

CeOx/PtCu/Ce- CuOx/C 332.5 mA / mg-Pt [21]
Cubic core shell Pd@Pt 580 mA / mg-Pt [22]
Pd—Cu (3:1) nanoalloy 659.4 mA / mg [23]

PdAg/C 172 mA / mg-Pd [24]




5. Alternative mechanisms for the methanol oxidation reaction

Mechanism S2[25,26]

Mgte + OH™ > M, = (OH) 45 + (S4)
M, - (CH30H) s + 40H ™ 5M,, - (CO) 445 + 4H,0 + 4e~ (S5)
Mgire = (€C0O) g5 + Mype = (OH) g5 + OH ™ 22M gy, + CO, + Hy0 + €7 (S6)

Mechanism S3[27]

Mgy + HyO>M o~ (OH) g+ HY +e” (S7)

Mgy, + CH;OH-M g, = (OCH;) g+ HY +e” (S8)
M, - (OCH3) pus + Mo — (OH) g Mo — (00CHS) 1ys + My, + 3H™ 4 3e” (S9)
Mg = (00CH3) gq> Mo +CO, +HY +e” (S10)

Concerning mechanism S3, equation 1 describes the adsorption and discharge of OH ~ ions, while

(€0)qas and finally equation 3

+ (OH ")

equation 2 sums up complex steps leading to the production of

(€0)qqs ads to leave the Mgite

shows the interfacial reaction between key intermediates
regenerated. On the other hand, the first step in mechanism S4 (equation 4) is analogous to equation
1. Equation 5 describes methanol discharge to produce adsorbed methoxy moieties, that react with

adsorbed hydroxyl through the process shown in equation 6, to yield CO, via equation 7 and the

. M .
release of active  site,



6. Parameters of the multistep methanol oxidation reaction

Table S4. Mechanistic parameters corresponding to equations 4-11, for the specific cases where

different steps described each equation is the rate determining, assuming the transfer coefficient
a=0.528]

Expected

Rat.e . y v r QAerf an
determliung 3 logi (mv /

step

dec)

Equation 4 0 1 0 0 -
Equation 5 0 1 1 0.5 118
Equation 6 1 1 1 1.5 39
Equation 7 2 1 1 2.5 24
Equation 8 3 1 1 3.5 17
Equation 9 4 1 1 4.5 13
Equation 10 5 1 1 5.5 11
Equation 11 6 1 0 6 10

*The numbering of the equations in this column corresponds to the numbering of equations in the
main manuscript, which is reproduced here with identical numbering as in the main text, for the
sake of simplicity.

Msite + CH30H_>Msite

- (CH30H)ads (main text eq. 4)

Mo = (CHBOH)ads +O0H —>My, - (CHBO)ads tH,0 te” (main text eq. 5)

Msite - (CH30)ads + OH” _)Msite - (CHZO)ads + HZO te (main text eq. 6)

Mo ~ (CHZO)ads + OH™ =My, = (CHO) gy + Hy0 +e” (main text eq. 7)
Mire = (CHO) g5 + OH ™ oMy, = (CO) g5 + Hy0 + e (main text eq. 8)
My, + OH™ =My, - (OH) 4, +e” (main text eq. 9)
M, — (CO)gs + Myyo — (OH) yyg + OH ™ >M - (CO,) gy ++ H,0 +e~ + M

site  (main text eq. 10)

Mo = (COZ)ads_)Msite +C0, (main text eq. 11)



7. Additional electrochemical data for methanol oxidation
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Figure S4. Cyclic voltammetry at different scan rates of glassy carbon electrodes modified with
the Lag ggFeg.93Cug osPdg.0203 perovskite and c(methanol) = 0.1 M dissolved in NaOH =1 M.
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Figure S5. Cyclic voltammetry at different scan rates of glassy carbon electrodes modified with
the Lag gsFeg.93Cuq osPdo 0205 perovskite and c(methanol) = 0.2 M dissolved in NaOH = 1 M.



| = supporting electrolyte (10 mV/s)
=10 mV/s

1—100mVis  c(MeOH)=0.5M
|=——150 mV/s

8
200 mV/s
61— 250mvis
=300 mV/s
— 350 mV/s
44 s00mvis
| =450 mV/s
— 500 mV/s
2‘ —— 550 mV/s
| ——600 mV/s
0

j (mA/em’)

060 075 090 1.05
E (V) vs. Ag/AgCI

Figure S6. Cyclic voltammetry at different scan rates of glassy carbon electrodes modified with
the Lag ggsFeg.03Cuq osPdo 0205 perovskite and c(methanol) = 0.5 M dissolved in NaOH = 1 M.
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Figure S7. Cyclic voltammetry at different scan rates of glassy carbon electrodes modified with
the Lag ggsFeg 93Cuq osPdg 0205 perovskite and ¢(methanol) = 1 M dissolved in NaOH = 1 M.
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Figure S8. Cyclic voltammetry at different scan rates of glassy carbon electrodes modified with
the Lag gsFeg.03Cuq 0sPdo 0205 perovskite and c(methanol) = 1.5 M dissolved in NaOH = 1 M.
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Figure S9. Cyclic voltammetry at different scan rates of glassy carbon electrodes modified with
the Lag gsFeg 93Cuq osPdg 0205 perovskite and ¢(methanol) =2 M dissolved in NaOH = 1 M.
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Figure S10. Chronoamperometric trace of methanol electrooxidation for the
GCE|Lag ggFeg.93Cug 0sPdo 0203/ Nafion system; c(MeOH) =2 M, c(NaOH) = 1 M, ¢(Na,SO,4) =0.1
M.
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Figure S11. Tafel plot recorded at 10 mV/s of glassy carbon electrodes modified with the
Lag gsFe 93Cug 9sPdy 0,03 perovskite at different concentrations of methanol, as expressed by the
legend in the upper left.
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Figure S12. Tafel slope determined from Figure S7 in different potential windows for the
GCE|Lao,ggFeO.93Cu0.05PdO~0203|Naﬁ0n system.



8. Operando EC-Raman measurements

Spectro-electrochemical measurements were performed using an EC-Raman cell designed by HORIBA
(figure bellow), with an active surface area of 0.79 cm? and equipped with a fluidic system. During the
experiments, the flow rate inside the cell was fixed at 60 mL-min* to ensure efficient bubble removal.

Figure S13. 3D representation of the HORIBA EC-Raman Cell

Potentiostatic electrochemical measurements (chronoamperometry and chronopotentiometry) were
performed using a BioLogic SP-150e potentiostat during simultaneous Raman acquisition, with data
recorded and processed via EC-Lab software.

Raman spectra were collected using a LabRAM Soleil microspectrometer (HORIBA France SAS) equipped
with a 532 nm laser (maximum power 108 mW) and an 1800 grooves/mm diffraction grating. The
acquisition and processing of the spectroscopic data (Raman spectra with fluorescence background) were
carried out using LabSpec software.

For powder analysis, the laser power was limited to 3.5 mW to avoid laser-induced degradation. Spectra
were acquired using a Nikon 50x long working distance objective (numerical aperture = 0.6), with an
integration time of 10 s and 15 accumulations per spectrum.

For Operando EC-Raman measurements, the laser power was set to 54 mW. The sapphire window of the
EC-Raman cell provides a transmission of approximately 85% over the relevant spectral range. Each
spectrum was recorded with an integration time of 8 s and 10 accumulations. All measurements were
performed using a 10 x 10 pum macrospot generated by HORIBA’s patented QScan technology, ensuring
uniform illumination without loss of laser intensity or confocality.
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Figure S14. Operando Raman spectra of bare glassy carbon in alkaline media (I M NaOH)
containing 0.1 M Na>SO. and 2 M MeOH, recorded at open circuit potential (OCP) and under an
applied current density of 5 mA cm™, along with the Raman spectrum of the same electrolyte
measured in a cuvette.
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Figure S15. Operando Raman spectra of a 10 pL drop of a mixture of Lag gsFeg 93Cug osPdo 0203

and Nafion deposited on the electrode surface, recorded during chronoamperometry (top) and
chronopotentiometry (bottom).
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9. Additional results from DFT
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Figure S17. PD-DOS states for O-2p, Pd-4d and Cu-3d.



Figure S18. Structural motifs of the different reaction intermediates calculated for the methanol
oxidation reaction.



10. Determination of the electroactive area of the modified electrode
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Figure S19. Determination of the electroactive surface area of a of the GCE modified with
Lag gsFeg.93Cug osPdg.0203|Nafion; (a) cyclic voltammograms for a solution consisting in
Ru(NH;)6Cl3 5-10* mol/mL in Na,SO4 0.1 mol/L; D[Ru(NH3)sCl;] = 8.43-10°% cm?/s [29], (b)
linear relation between the peak current and the square of the scan rate.

The electroactive area of the GCE|La, ggFeg 93Cug 0sPdg 0203/ Nafion system was determined using
the Randles-Sevéik equation [30], which takes for the form of equation S11 at 25 °C for A
expressed in cm?, D in cm?/s, ¢ in mol/mL, v in V/s and i, in Amperes.

i, = (2.69-10%)n* 24D 2cv!/? (S11)
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