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S1 Cationic sites explanation.

In this work we used the naming and localization of the four distinctive conventional cationic sites as 
reported by Frising et al. with the details provided in Table S1. 

Table S1. Nature, multiplicity and localisation of the different conventional cation sites in the faujasite 
structure.

Localization of cationic sitesNature of 
cationic 
site

Maximum 
number of 
cation/u.c. Cavity Definition

Coordinate
s

Site I 16
Double 6-
membered 
ring (D6R)

In the double six-membered ring
0, 0, 0 or    
x, x, x

Site I’ 32
In the sodalite cage, close to the 
hexagonal window to the D6R

x, x, x

Site II’ 32

Sodalite 
Cage In the sodalite cage, close to the 

hexagonal window to the supercage
x, x, x

Site II 32 Supercage
In the supercage, close to the hexagonal 
window to the sodalite cage.

x, x, x

S2 Atomic coordinates used in the Rietveld refinement model.

In situ XRD (wavelength = 0.496632 Å) was refined in a surface refinement using TOPAS 
software1 from 1.4 to 33 range. The parameters constant across the whole refinement matrix 
were: 

 5 background parameters and "one_on_x". 

 4 Thompson-Cox-Hastings pseudo-Voigt broadening parameters. 

 Zero error and both the position and intensity of the amorphous bump from the 
capillary reactor. 

The list of local parameters allowed to refine with temperature is as follows: 

 Thermal parameters of O (in the framework), T site and sodium. The occupancy of the 
framework was fixed to 1, while individual sodium atoms and dummy water were 
refined independently.

 The lattice parameter of the unit cell.

 The constrained x and y atomic coordinates of O (in the framework) and the scale factor.

Atomic coordinates used in the refinement protocol are listed in Table S2 (for zeolite framework 
atoms), Table S3 (for sodium cations), and Table S4 (for dummy oxygen atoms representing 
water molecules). The constraints of atomic coordinates for oxygen atoms in the framework 
are listed below Table S2.
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Table S2. Atomic coordinates of the atoms of the zeolite framework..
Label Multiplicity x fract y fract z fract Occupancy Biso
site Si1     192 x   0.12557 y   0.94652 z   0.03645 occ Si    1 beq =BSi 
site O1      96 x =O1x y =O1x z   0.96457 occ O     1 beq =BO 
site O2      96 x =O2x y =O2x z   0.32096 occ O     1 beq =BO 
site O3      96 x =O3x y =O3x z   0.14056 occ O     1 beq =BO 
site O4      96 x =O4x y =1-O4x z   0 occ O     1 beq =BO 

Constraints of atomic coordinates:
O1x: max 0.19 min 0.15
O2x: max 0.20 min 0.17
O3x: max 0.27 min 0.23
O4x: max 0.12 min 0.08

Table S3. Atomic coordinates of the sodium cations.
Label Multiplicity x fract y fract z fract Occupancy Biso
site I    16 x 0 y 0 z 0 occ Na =occ I beq =BNa
site I'    32 x 0.071381 y 0.071381 z 0.071381 occ Na =occ Im beq =BNa
site II'    32 x 0.165628 y 0.165628 z 0.165628 occ Na =occ IIm beq =BNa
site II    32 x 0.250346 y 0.250346 z 0.250346 occ Na =occ II beq =BNa

Table S4. Atomic coordinates for dummy oxygen atoms representing water molecules.
Label Multiplicity x fract y fract z fract Occupancy Biso
site A    192 x 0.452953 y 0.077137 z 0.028691 occ O =occ_A beq = 5
site B    192 x 0.339861 y 0.207472 z 0.351690 occ O =occ_B beq = 5
site C    192 x 0.598430 y 0.557106 z 0.535525 occ O =occ_C beq = 5

S3 Computational Details of GCMC simulations.

Van der Waals interactions between guest-host and guest-guest molecules were described by 
Lennard-Jones (LJ) potentials, truncated at a cutoff distance of 12Å. For water, the all-atom 
TIP4P model was utilized.2 Interactions between the zeolite framework, sodium cations, and 
water were modeled using parameters reported by Erdös et al.3,  while the atomic charges for 
the zeolite framework were adopted from Jaramillo et al.4 All corresponding force-field 
parameters are listed in Table S5.

Lorentz-Berthelot mixing rules were applied to parameterize adsorbate-adsorbent interactions, 
and electrostatic interactions were managed using the Coulomb potential and Ewald 
summation. The ideal gas approximation was considered for water, due to the pressures being 
lower than 10 kPa. Water movements included insertion/deletion of molecules (accounting for 
40% of the moves), as well as translation, rotation, and reinsertion (each representing 20% of 
the moves). Cation mobility was facilitated through translation and random translation 
movements, both with equal probability. Each GCMC simulation consisted of 50,000 
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equilibration cycles followed by 300,000 production cycles, with each cycle containing a 
number of Monte Carlo moves equal to the number of molecules present in the system. To 
accurately model zeolite Na-Y with adsorbed water molecules, the GCMC simulations were 
performed at varying temperatures (T = {50, 86, 100, 125, 140, 165, 220, 250, 300, 350, 400} 
°C) and pressures (p = {0.01, 0.05, 0.1, 1, 10, 100} Pa). The pressures were varied as the goal 
was to reproduce the TGA calculated number of adsorbed water molecules and not to check 
the adsorption capacity of zeolite Y

Table S5. A: Lennard-Jones parameters and atomic charges used in the simulation. B: Lennard-Jones 
parameters for the interactions between specific interaction sites. Subscript ‘water’ represents atom of 
the water molecule, ‘zeolite’ represents atom of the zeolite.
A B

Atom type ε [K] σ [Å]
Atomic 
charge

Site 1 Site 2 ε [K] σ [Å]

Owater 78 3.154 0 Nazeolite Ozeolite 33 3.2
Mwater -1.04 Nazeolite OAl-zeolite 23 3.4
Hwater 0.52 Nazeolite Owater 75 2.39
Nazeolite 251.78 3.144 1.00 Ozeolite Owater 13.71 3.3765
Alzeolite 1.75 OAl-zeolite Owater 13.71 3.3765
Sizeolite 2.05
Ozeolite -1.025
OAl-zeolite -1.20

S4 Details of MLPs training.

To train the Machine Learning Potentials four active learning loops were performed with the 
details illustrated in the Figure S1. Starting from a small initial training set (950 snapshots), the 
goal is to gradually explore more and more of the phase space. To do that efficiently we use an 
iterative process of employing the MLP in a series of parallel NPT-MD simulations, recomputing 
the energies and forces of the last snapshot with DFT and adding those structures to the 
training set with which an updated MLP is trained.

The first three iterations of MLP NPT-MD were conducted at 200 K and run for 0.1 ps (200 MD 
steps, each 0.5 fs). Then, five more iterations of MLP NPT-MD were run at 500 K for 3000 MD 
steps, followed by three iterations at 700 K for 2000 MD steps. Finally, three iterations at 900 
K for 2000 MD steps were performed. After each iteration, the final MD snapshot was 
recomputed with DFT and added to the total training set. 

After the fourth active learning loop, the final MACE MLP was trained to the energies and forces 
with a cutoff radius of 5 Å, 32 channels, L=3 equivariant messages, 2 layers, and a body order 
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of 3. The models were trained for 600 epochs with weights of 100 for the energy and 1 for the 
forces. All models were trained to validation errors of at most 10 meV/atom on the energy and 
200 meV/Å on the forces.

Figure S1. Schematic representation of the four active learning loops performed to train MLPs.

S5 Identification of cationic sites from MLP NPT-MD simulations

To identify and assign each sodium cation to one of the four conventional cationic sites in 
faujasite zeolite, as described in the S1, a distance-based method was applied. Using the 
coordinates for each cationic site position obtained from Rietveld refinement (S2), a specific 
cutoff radius was set for each site: site I – 1.8 Å, site I’ – 2.0 Å, site II’ – 2.0 Å, and site II – 2.4 Å. 
Each cation was examined to determine if it fell within the sphere defined by the cutoff radius 
for a particular site. If it was located within this sphere, it was assigned to that site. If a cation 
was not found to belong to any of the conventional sites, it remained unclassified. Figure S2 is 
a graphical representation of the cutoff regions corresponding to each site type.

Figure S2. Graphical representation of identification of sodium sites from MLP NPT-MD simulations.
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S6 TGA Results.

Figure S2presents the TGA plot for the CBV-100 sample. It can be observed that the dehydrated 
zeolite Y mass corresponds to the 78.25% of the hydrated sample. 

Figure S3. Weight percent loss during thermogravimetric analysis of the zeolite Na-Y sample (CBV-100).

To assess the sensitivity of zeolite Na-Y to external conditions such as humidity, the same 
sample was subjected to thermogravimetric analysis under different conditions compared to 
the original measurement. Figure S4 illustrates the TGA plot recorded during these alternate 
conditions. It is evident from the plot that the sample adsorbed a greater number of water 
molecules than observed in the initial TGA measurement (Figure S3).

Figure S4. Weight percent loss during TGA of the zeolite Na-Y sample (CBV-100) performed during 
different external conditions.
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S7 Mean Square Displacement and self-diffusion coefficient

Mean Square Displacement (MSD) were calculated using Einstein formula:

𝑀𝑆𝐷(𝑟𝑑) = 〈1
𝑁

𝑁

∑
𝑖 = 1

|𝑟𝑑 ‒ 𝑟𝑑(𝑡0)|2〉𝑡0

where  is the number of equivalent particles the MSD is calculated over,  are their 𝑁 𝑟

coordinates and  is the desired dimensionality of the MSD.𝑑

MDAnalysis Python library 5,6 was used to perform the calculations of MSD by the Einstein 
relation and then to calculate the self-diffusivity. Self-diffusivity can be calculated from the MSD 
by performing linear least square regression to fit the model with respect to the lag-time. 

𝐷 =
1

2𝑑
lim
𝑡→∞

𝑑
𝑑𝑡

𝑀𝑆𝐷(𝑟𝑑)

The line was fitted in the lag time range 50 – 300 ps. The MSD curves for water molecule and 
sodium are presented in Figure S4 and the self-diffusion coefficient with error bars given by the 
corresponding standard error are plotted in Figure S5.   

Figure S5. Mean Square Displacement (MSD) as obtained from trajectiories of the MLP-MD simulations. 
Top: MSD for water molecules. Bottom: MSD for sodium cations. Data from simulations at various 
temperatures (represented by different colors).
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Figure S6. Self-diffusion coefficients from MSD data with standard error bars.Top: Water molecule 
diffusion coefficients as a function of temperature, with a secondary Y-axis indicating changes in water 
molecule count. Bottom: Sodium cation diffusion coefficients against temperature, with a secondary Y-
axis indicating changes in number of unclassified Na cations.

Diffusion coefficients for water molecules in zeolite Y range from 2 - 7 x 10-10 m2 s-1, depending 
on the loading and temperature. The highest values are observed in models with an 
intermediate water count and within the temperature range of 140–250°C. Surprisingly, at 
higher temperatures, the diffusion coefficient does not increase, which is counterintuitive given 
the expectation of increased kinetic activity. Demontis et al.7 studied the diffusion of water in 
zeolite NaY using quasi-elastic neutron scattering and molecular dynamics simulations (of at 
least 5 ns) at various water loadings and different temperatures. Their results showed that at 
100°C and a water loading of 150 molecules per unit cell (mol./uc.),  the calculated diffusion 
coefficient was 8.9 x 10-10 m2 s-1,  which is similar to our results. However, at 300°C and a water 
loading of 20 mol./uc., the diffusion coefficient for water was 24 x 10-10 m2 s-1, which is one 
order of magnitude higher than our results. The discrepancies at higher temperatures are most 
likely due to the inadequately short MLP-MD simulations, which did not allow for an accurate 
description of water mobility.

In comparison, the diffusion coefficient for sodium was lower than that for water molecules. 
The highest sodium mobility was observed at 100°C and 125°C, corresponding to a reduced 
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number of adsorbed water molecules compared to the initial state. This increase in mobility 
can be attributed to the less confined space, as sodium, initially located in the supercage, 
migrates toward the zeolite framework. Despite increasing temperatures, the diffusion 
coefficients for sodium do not increase. As explained in the main text, this is primarily due to 
sodium migration to sites II and I, which are stable sites, resulting in sodium diffusing mostly 
within areas close to these sites. Another reason for the lack of increased sodium mobility could 
be the simulation length, which might have been too short to accurately describe the 
movement.

S8 Rietveld refinement - total number of sodium and weighted profile residuals 
(Rwp)

The total number of refined sodium cations was calculated and is reported in Figure S7. 
Additionally, the weighted profile residuals (Rwp) were calculated at each refinement step. 
Overall, the fit of the refinement model is good, with Rwp values falling within accepted ranges 
(up to 10%). 

Figure S7. Total number of identified sodium cations and the weighted profile residual (Rwp) as a 
function of temperature. Data obtained from Rietveld refinement.
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S9 Relative model for the XRD data – H2O distribution 

Figure S8 visualization provides a comparative model for the X-ray diffraction data, with the 
plot showing changes in the population of each water site. All water sites used in the model 
were located within the supercage.

Figure S8. Top: Line representation of the Y zeolite framework showing one supercage and several 
sodalite cages together with the refined water (A, B, and C) sites according to the models used in the 
refinement (Supporting Information 2). Bottom: The number of adsorbed water molecules per unit cell 
obtained from Rietveld refinement as a function of temperature. 
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S10 Modeling the dehydration of siliceous zeolite Y

To examine changes in the unit cell parameter upon dehydration of siliceous zeolite Y, 
molecular dynamics simulations with trained MLPs were performed using OpenMM software9 
in the NPT ensemble. The initial structures contained the same number of water molecules as 
the corresponding Na-Y model at given temperature. The simulations were performed at T = 
50, 125, 165, 250 and 400 °C with the number of water molecules equal to 183, 121, 94, 34 
and 0, respectively. 

Temperature and pressure were kept constant, with a timestep of 1.0 fs. Each simulation ran 
for 250 ps (250 000 MD steps). Temperature was controlled using a Langevin thermostat with 
a time constant of 100 fs, and pressure was controlled using a Monte Carlo barostat with a time 
constant of 1 ps. Data on energy, temperature, and unit cell volume were recorded every 100 
steps, while trajectories were captured every 1 000 steps.

The unit cell parameter was calculated as an average of the data recorded during the last 100 
ps of the MD simulations. It was assumed that the framework symmetry remained unchanged, 
and that zeolite Y maintained a cubic structure throughout each MD simulation.

S11 Validation of the Machine Learning Potentials

To validate the Machine Learning Potentials, the final 10 snapshots from the MLP-MD 
simulations at each studied temperature were extracted, in total 120 snapshots. Energies and 
forces for each snapshot were calculated using Density Functional Theory (DFT) with the 
PBE+D3 functionals 10,11, as implemented in version 8.2 of the CP2K simulation package. 
Differences between the ab initio values and those obtained from the MLPs were calculated as 
errors. The errors were determined using the following equations: 

 

𝐸𝐷𝐹𝑇 ‒ 𝐸𝑀𝐿𝑃

𝑛𝑎𝑡𝑜𝑚𝑠
 #(1)

 𝐹𝐷𝐹𝑇 ‒ 𝐹𝑀𝐿𝑃 #(2) 

Equation (1) calculates the energy error per atom, while Equation (2) calculates the average 
force error. The results of these validations are shown in Figure S9.
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Figure S9. Energy and forces calculated errors on each compared system.

 

S12 Elemental analysis - EDX

The elemental composition, Si/Al ratio and Na/Al ratio were determined by energy-disperse X-
ray spectroscopy (EDX) at a 20 kV accelerating voltage on 200 × 200 μm areas of pelletized 
material. Quantification was performed using the Bruker Quantax system consisting of a X-flash 
6|10 detector and Esprit software. The results are presented in Table S6.

Table S6. EDX analysis of sample CBV 100.

Sample 
ID

SiO2/Al2O3 
mole ratio

Nominal 
Cation 
Form

Si/Al 
nominal Si/Al EDX Na/Al EDX Formula Calculated 

Formula (EDX)

CBV 
100 5.1 Sodium 2.55 2.238 0.998 Na54(Si138Al54)O384 Na59(Si133Al59)O384

S13 27Al solid-state-NMR

A Bruker AVANCE Neo spectrometer operating at a magnetic field of 18.8 T (1H resonance 
frequency 800 MHz) was applied for the solid-state NMR experiment using a 3.2 mm double 
channel Magic Angel Spinning (MAS) probe at room temperature. The MAS rate was 20 kHz. 
We applied a pulse acquire type experiment with a short hard pulse (pulse width less than 
π/12). The spectrum was referenced to 1M Al(aq) set to be 0 ppm. To obtain the spectrum the 
raw data (FID) was apodised with a line broadening factor of 50 Hz and baseline corrected. A 
full spectrum is presented in Figure S10.a, with a large peak as a central transition and 
surrounding small ones are spinning sidebands.  The large peak is associated with Al in T-sites 
and has a chemical shift of 62.0 ppm. The zoom-in of the spectrum is presented in Figure S10.b, 
with a large magnification in a rectangle with blue background. A very small peak at 11.3 ppm 
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can be attributed to extra-framework Al or octahedrally coordinated Al. Estimated peak 
intensities shows that this small peak should be less than 0.5% of the total peak areas.

Figure S10.a) Full 27Al-NMR spectrum of as-received Na-Y, b) Zoom-in to the central peak at 62.0 ppm, 
and small peak at 11.3 ppm.
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