Supporting information of

Homogenizing Liquid-like Cu Sublattice for High-performance

Cu₂Te_{0.5}Se_{0.5} Thermoelectric Materials

Hanqian Li^{1,2,3,8}, Bangzhi Ge^{4,8}, Wenqi Xie^{5,8}, Ruoyan Li⁴, Chao Li⁷, Wanqi Jie⁴, Dongxu Zhang¹, Yi Qin^{2,3,*}, Yuan Yu^{6,*}, Chongjian Zhou^{4,*}

¹College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China.

²School of Material Science and Engineering, School of Conservation Science & Technology

for Cultural Heritage, Shaanxi University of Science and Technology, Xi'an, 710021, China

³Key Laboratory of Materials and Technology for Unearthed Cultural Heritage Conservation, Ministry of Education, Xi'an 710021, China

⁴State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China

⁵School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China

⁶Institute of Physics (IA), RWTH Aachen University, 52056 Aachen, Germany

⁷The Fifth Electronics Research Institute of Ministry of Industry and Information Technology, Guangzhou 510006, China

⁸These authors contributed equally to this work

*Correspondence to: cjzhou@nwpu.edu.cn (C. Z.), yu@physik.rwth-aachen.de (Y. Y.), and qinyi@sust.edu.cn (Y. Q.)

Contents

1. Details in the Theoretical Calculations

2. Supporting Table

Table S1. Density of the Quench at liquid, Quench at cubic, and Quench at trigonal samples after SPS process.

3. Supporting Figures

Figure S1. The scanning electron microscopy (SEM) image for $Cu_2Te_{0.5}Se_{0.5}$ with layered cleavage plates in nanoscale.

Figure S2 The Lorenz number (L) of the of Quench at liquid, Quench at cubic, and Quench at trigonal samples with respect to temperature.

Figure S3 The temperature-dependent κ_{ele} for Quench at liquid, Quench at cubic, and Quench at trigonal samples

Figure S4. The stability of the Cu₂Te_{0.5}Se_{0.5} samples of Quench at liquid was tested for 5 cycles for temperature-dependent (a) electrical conductivity (σ), (b) Seebeck coefficient (*S*), and (c) power factor (PF).

4. References

1. Details in the Theoretical Calculations

1.1 Lorenz number¹

The total thermal conductivity κ_{tot} is divided into electrical (κ_{ele}) and lattice thermal conductivity (κ_{lat}), the subtraction of κ_{ele} from κ_{tot} is calculated by Wiedeman-Franz relation $\kappa_{lat} = \kappa_{tot} - \kappa_{ele}$ ($\kappa_{ele} = L \cdot \sigma \cdot T$), where σ and L is electrical conductivity and Lorenz number, respectively. L was calculated according to the equation (S1 – S3).

$$L = \left(\frac{k_B}{e}\right)^2 \left[\frac{3F_0(\eta)F_2(\eta) - 4F_1(\eta)^2}{F_0(\eta)^2}\right]$$
(S1)

$$S = \pm \frac{k_B}{e} (\frac{2F_1(\eta)}{F_0(\eta)} - \eta)$$
(S2)

$$F_n(\eta) = \int_0^\infty \frac{\chi^n}{1 + e^{\chi - \eta}} d\chi$$
(S3)

where S is the Seebeck coefficient, $F_n(\eta)$ is the *n*th order Fermi integral, η is the reduced Fermi energy, *e* is the charge of an electron, and k_B is the Boltzmann constant.

1.2 Weighted mobility²

To evaluate the manufacturing of engineering semiconductor devices, the understanding of the charge carrier mobility is required. At room temperature and above, and for mobilities as low as 10^{-3} cm²·V⁻¹·s⁻¹, the weighted mobility μ_w can be calculated from the Seebeck coefficient and electrical resistivity measurements according to the equation (S4).

$$\mu_{w} = 331 \frac{cm^{2}}{Vs} \left(\frac{m\Omega \ cm}{\rho}\right) \left(\frac{T}{300 \ K}\right)^{-3/2} \left[\frac{exp\left[\frac{|S|}{\kappa_{B}/e} - 2\right]}{1 + exp\left[-5\left(\frac{|S|}{\kappa_{B}/e} - 1\right)\right]} + \frac{\frac{3 \ |S|}{\pi^{2}\kappa_{B}/e}}{1 + exp\left[5\left(\frac{|S|}{\kappa_{B}/e} - 1\right)\right]}\right]$$

(S4)

where ρ is the electrical resistivity measured in m $\Omega \cdot \text{cm}$, *T* is the absolute temperature in K, S is the Seebeck coefficient, and $\kappa_{\text{B}}/e = 86.3 \,\mu\text{V}\cdot\text{K}^{-1}$.

1.3 Theoretical lattice thermal conductivity ³

The minimum limit of the theoretical lattice thermal conductivity (κ_{min}) was estimated to be based on Cahill's formulation

$$\kappa_{min} = \left(\frac{\pi}{6}\right)^{1/3} k_B n^{2/3} \sum_i \nu_i \left(\frac{T}{\Theta_i}\right)^2 \int_0^{\Theta_i/T} \frac{x^3 e^x}{(e^x - 1)^2} dx$$
(S5)

The sum is taken over the three sound modes (two transverse and one longitudinal) with speeds of sound v_i , Θ_i is the cutoff frequency for each polarization expressed in degress K, $\Theta_i = v_i (\hbar/k_B) (6\pi^2 n)^{1/3}$, and *n* is number density of atoms.

2. Supporting Table

Table S1. Density of the Quench at liquid, Quench at cubic, and Quench at trigonal samples after SPS process.

Samples	Density (g cm ⁻³)	Relative density (%)
Quench at liquid	7.41	99.65
Quench at cubic	7.46	98.89
Quench at trigonal	7.48	98.72

3. Supporting Figures

Figure S1. The scanning electron microscopy (SEM) image for $Cu_2Te_{0.5}Se_{0.5}$ with layered cleavage plates in nanoscale

Figure S2 The Lorenz number (L) of the of Quench at liquid, Quench at cubic, and Quench at trigonal samples with respect to temperature.

Figure S3 The temperature-dependent κ_{ele} for Quench at liquid, Quench at cubic, and Quench at trigonal samples

Figure S4. The stability of the Cu₂Te_{0.5}Se_{0.5} samples of Quench at liquid was tested for 5 cycles for temperature-dependent (a) electrical conductivity (σ), (b) Seebeck coefficient (*S*), and (c) power factor (PF)

3. References

- C. Zhou, Y. K. Lee, J. Cha, B. Yoo, S.-P. Cho, T. Hyeon and I. Chung, *J. Am. Chem. Soc.*, 2018, 140, 9282-9290.
- 2. G. J. Snyder, A. H. Snyder, M. Wood, R. Gurunathan, B. H. Snyder and C. Niu, *Adv. Mater.*, 2020, **32**, e2001537.
- 3. D. G. Cahill, S. K. Watson and R. O. Pohl, *Phys Rev B Condens Matter*, 1992, 46, 6131-6140.