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Characterization techniques: The powder x-ray diffraction (PXRD) patterns were recorded by
a Bruker AXS model D8 advance diffractometer in Bragg angle from 5° to 65° with A=1.54187
A. The field emission scanning electron microscope (FE-SEM) images were performed using a
FE-SEM ZEISS Sigma 300. The TEM image was investigated using the TEM Philips EM 208S
instrument. To do EDAX analysis JEOL JSM-6380LV scanning electron microscope was
applied. The Thermo-Scientific ESCALAB 250Xi was applied to analyze the surface elemental

composition.
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Figure S1. XPS survey spectrum of pristine NiMn-LDH (a), high-resolution XPS spectra of Ni
2p (b) and Mn 2p (c).
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Figure S2. LSV curves of rGO/CuCo,S,/NiMn-LDH at different temperatures, (b) Ini-1/T liner

fitting curves for E, in UOR.
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Figure S3. (a) CV curves of CuCo,S, at different scan rates in UOR condition, (b) Cy linear
fitting curve.
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Figure S4. (a) CV curves of NiMn-LDH at different scan rates in UOR condition, (b) Cy linear
fitting curve.
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Figure S5. (a) CV curves of rGO at different scan rates in UOR condition, (b) Cy linear fitting
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Figure S6. (a) CV curves of CuCo,S,/NiMn-LDH at different scan rates in UOR condition, (b)

Cy linear fitting curve.
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Figure S7. (a) CV curves of CuCo,S,/rGO at different scan rates in UOR condition, (b) Cy linear

fitting curve.
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Figure S8. (a) CV curves of NiMn-LDH/CuCo,S,/rGO at different scan rates in UOR condition,

(b) Cy4 linear fitting curve.

S-7



a b
@ . (b)
- 100 myv s 1
| —
S i
5 £
=T O
= < 0.4 -
E 0.5 - B
.E B
5 z
&= g 10 mV 572 5
E" =
[aF} E D‘.2 T
= @
5 =
O -0.5 A =
O
-1 T T T 0 T T T
0.84 0.87 0.9 0.93 0.96 0 30 60 90
Potential( V vs. RHE) Scan rate (mV s™?)

Figure S9. (a) CV curves of NiMn-LDH/rGO at different scan rates in UOR condition, (b)

Cy linear fitting curve.
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Figure $10. TOF amounts of the electrocatalysts: (1) NiMn-LDH/CuCo0,S,/rGO, (2) NiMn-

LDH/CuCo,S,, (4) CuC0,S4/rGO, (5) CuCo,S4, (6) NiMn-LDH/rGO, (7) NiMn-LDH, (8) rGO,
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Figure S11. chronopotentiometric curve of NiMn-LDH/CuCo,S,/rGO in long period of time

for UOR.
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Figure S12. FE-SEM image of NiMn-LDH/CuCo0,S.4/rGO after UOR tests.
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Table S1. OER performance of rGO/CuCo,S,/NiMn-LDH@NF in comparison with literature.

Electrocatalyst Overpotential (MV@ 10 mA cm??) Reference
NiMn-LDHs (Br) 240 S1
NiFe LDH/NiS 230 S2
NisFe LDH 249 S3
FeNi LDH/FeNi,S, 259 S4
NiFeCe-LDH 232 S5
NiFe-LDH 281 S6
NiFe-LDH/SnS 310 S7
CoFeP/rGO-2 275 S8
Fe-doped NiWO, 230 S9
NiMoO4/NF 310 S10

rGO/CuCo,S4/NiMn-LDH@NF 220 This work

Table S2. OER performance of electrocatalysts for OER.

Electrocatalyst N1o (MV) Tafel slope(mV dec?)
RuO, 218 126
CuCo,S, 308 199
NiMn-LDH 448 247
rGO 610 249
CuCo,S4/NiMn-LDH 244 173
CuCo,S4/rGO 277 195
NiMn-LDH/rGO 339 222
rGO/CuCo,S4/NiMn-LDH@NF 220 150

Table S3. Potential, Tafel slope, activation energy, double layer capacitance of
electrocatalysts for UOR.

Electrocatalyst Potential (v)@10 mA cm-  Tafel slope (mV dec!)  Cq (mF cm?)
2

RuO, 1.40 139 =
CuCo,S, 1.44 143 2.8
NiMn-LDH 1.58 153 1.5
rGO 1.71 155 2.2
CuCo,S4/NiMn-LDH 1.31 140 5.2
CuCo0,S4/rGO 1.41 141 3
NiMn-LDH/rGO 1.47 150 4
rGO/CuCo,S4/NiMn-LDH@NF 1.27 136 9
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Table S4. UOR performance of NiMn-LDH/CuCo,S,/rGO and the reported electrocatalysts.

Electrocatalyst Potential/current density (V@mA cm2) Reference
LDH/a-FeOOH 1.35@10 S11
Mo-FeNi LDH 1.32@10 S12
NiCoV; o-LDH/NF-100 1.33@10 S13
NiCoCr-LDH/NF 1.38@100 S14
NiCo-LDH/NF 1.48@25 S15
Ni-TPA@NiSe/NF 1.37@100 S16
Mn-NiOOH 1.42@100 S17
CoNi-LDH/Fe MOF/NF 1.55@100 S18
FQD/CoNiLDH 1.36@10 S19
NiS/Ni3S,-Ni@NCNT 1.37@10 S20

rGO/CuCo,S4/NiMn-LDH@NF 1.27@10 This work

Table S5. HER performance of NiMn-LDH/CuCo,S,/rGO and the reported electrocatalyst

Electrocatalyst Overpotential at 10 mAcm2 (mV) Ref.
CoMnLDH@Cu(OH),/CF 155 s21
NiFe-LDH 245 S22
NiFe-LDH 272 S23
NiFe LDH-NS@DG hybrid 115 S24
NisFe LDH@NF 133 S25
NiCoFe LTHs/CFC 200 S26
CoSe/NiFe-LDH/EG 260 S27
NiFe-LDH/NiCo,0,4/NF 257 S28
NiMn-LDH/CuCo,S,/rGO 101 This work
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