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Fig. S1. CV curves of Li||Al cells measured between 2.5 and 4.6 V at a scan rate of 1 

mV s-1: (a) F1.2-DEF; (b) F1.0C0.2-DEF.
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Fig. S2. Corrosion behavior of aluminum (Al) current collectors under electrochemical 

cycling: (a-c) Optical images of (a) pristine Al current collector (control) and (b, c) Al 

collectors after 5 CV cycles (2.5 – 4.6 V) in (b) F1.0C0.2-DEF and (c) F1.2-DEF; (d-f) 

SEM images of (d) pristine Al (uncycled) and (e, f) Al collectors after 5 CV cycles in 

(e) F1.0C0.2-DEF and (f) F1.2-DEF.
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Fig. S3. Raman spectra in a wavenumber range from 880 to 915 cm-1.



5

Fig. S4. Raman spectra in a wavenumber range from 840 to 880 cm-1.



6

Fig. S5. CV curves of Li||Cu cells in the two studied electrolytes with the first scan 

conducted from the open circuit potential (OCP) to 0 V vs. Li/Li+.
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Fig. S6. LSV curves of Li||Al cells at a scan rate of 0.5 mV s-1 in F1.2-DEF and 
F1.0C0.2-DEF electrolytes.
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Fig. S7. Molecular dynamics (MD) simulation snapshots of electrolyte solvation 

structures: (a) F1.2-DEF (1.2 M lithium bis(fluorosulfonyl)imide (LiFSI) in 

dimethoxyethane (DME) / ethylene carbonate (EC) / fluoroethylene carbonate (FEC)) 

and (b) F1.0C0.2-DEF (1.0 M LiFSI + 0.2 M lithium perchlorate (LiClO4) in 

DME/EC/FEC (10:7:3, v/v/v)).
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Fig. S8. LSV curves of Li||Al cells at a scan rate of 1 mV s-1 in different electrolytes.
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Fig. S9. Initial discharge/charge profiles of Li||Si/C cells in different electrolytes at 

0.05C rate under 25 °C.
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Fig. S10. Average charge/discharge potentials of Li||Si/C batteries cycled at 0.33C 

under 25 °C.
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Fig. S11. Cycling performance of Li||Si/C batteries with the conventional localized 

high-concentration electrolyte (LHCE, 1.0 M LiFSI in DME/TTE (1:3.5, v/v)) at 0.33C 

under 25 °C (0.001 – 1.6 V). The cell was initially activated with one cycle at 0.05C 

(1C = 1100 mA g⁻¹), followed by two cycles at 0.1C.
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Fig. S12. Cycling performance of Li||Si/C batteries with F1.15C0.05-DEF, F1.1C0.1-
DEF, and F0.9C0.3-DEF electrolytes at 0.33C under 25 °C (0.001 – 1.6 V). All cells 
were initially activated with one cycle at 0.05C (1C = 1100 mA g-1), followed by two 
cycles at 0.1C.
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Fig. S13. Cycling performance of Li||Si/C batteries with F1, F2, F3, and F4 electrolytes 

at 0.33C under 25 °C (0.001 – 1.6 V). All cells were initially activated with one cycle 

at 0.05C (1C = 1100 mA g-1), followed by two cycles at 0.1C.
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Fig. S14. Lithium-ion diffusion coefficients of the Si/C electrodes at the 10th cycle in 

E-Control-F, F1.2-DEF, and F1.0C0.2-DEF electrolyte (after 3 formation cycles at 

0.1C), as calculated from GITT voltage profiles in Fig. S15.
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Fig. S15. GITT profiles of Li||Si/C cells with different electrolytes to evaluate lithium 

diffusion kinetics.
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Fig. S16. CV plots of Li||Si/C cells in F1.0C0.2-DEF and F1.2-DEF at a scan rate of 

0.05 mV s-1 (0.001 – 1.6 V).
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Fig. S17. Tafel polarization measurements of Li+ kinetics in (a) Li||Li and (b) Si/C||Si/C 

symmetric cells using F1.2-DEF and F1.0C0.2-DEF at 25 °C (Scan rate: 1 mV s-1).
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Fig. S18. SEM images of (a) pristine Si/C anodes and (b-d) cycled Si/C anodes after 

100 times in (b) E-Control-F, (c) F1.2-DEF, and (d) F1.0C0.2-DEF.
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Fig. S19. EDS analysis of chlorine element distribution on cycled Si/C electrodes. (a) 

F1.2-DEF and (b) F1.0C0.2-DEF electrolytes after 100 cycles.
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Fig. S20. Charge/discharge profile of Si/C||NCM811 cells in F1.2-DEF. The system 

shows charge failure at 4.2 V.
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Fig. S21. Morphology of aluminum current collectors after electrochemical 
cycling. SEM images of (a) pristine Al foil (uncycled), and Al foils after 10 cycles in 
Si/C||NCM811 full cells (2.5 - 4.4 V) using (b) F1.2-DEF and (c) F1.0C0.2-DEF 
electrolytes. 
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Fig. S22. The initial charge/discharge curves of Si/C||NCM811cells at 0.1 C. 

Substantial Li+ consumption occurs during the initial cycle in both E-Control-F and 

F1.0C0.2-DEF electrolytes.
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Fig. S23. Average Coulombic efficiency (Avg. CE) of Si/C||NCM811 full cells over 

the first 100 cycles. (a) Avg. CE at a charge cutoff voltage of 4.2 V. (b) Avg. CE at a 

charge cutoff voltage of 4.4 V. 
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Table S1. Cost Comparison Between F1.0C0.2-DEF and Silicon-Compatible 
Localized High-Concentration Electrolyte (Formulation 2: 1 M LiFSI + DME/1,1,2,2-
Tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE) (1:3.5, v/v)).1 Price data were 
obtained from Sigma-Aldrich (Merck Life Science) with prices current as of 4 July 
2025. All chemicals were of battery grade purity (≥ 99.9%). The total electrolyte cost 
was calculated from individual component costs normalized to 1L solution volume at 
standard concentration (Lithium Salt Volume Excluded).

Component Price
(RMB)

F1.0C0.2-DEF Cost 
(RMB)

Formulation 2 Cost 
(RMB)

LiFSI 95229.80 / kg 187 g 17807.97 187g 17807.97

LiClO4 32676.76 / kg 21.28 g 695.36 - -

DME 2464.98 / L 500 mL 1232.49 222.2 mL 547.22

EC 18304.44 / kg 498.75 g 9129.34 - -

FEC 30663.57 / kg 218.1 g 6687.72 - -

TTE 23092.80 / kg - - 1192.32 g 27534.01

Total - - 35552.88 - 45889.20
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Table S2. Electrolyte formulations in this study.

Electrolyte code Electrolyte formulation
E-Control-F 1.0 M LiPF6 in EC/EMC (ethyl methyl carbonate)/DMC

(dimethyl carbonates) (1:1:1, v/v/v) + 5wt.% FEC
F1.2-DEF 1.2 M LiFSI in DME/EC/FEC (10:7:3, v/v/v).

F1.15C0.05-DEF 1.15 M LiFSI + 0.05 M LiClO4 in DME/EC/FEC (10:7:3, v/v/v)

F1.1C0.1-DEF 1.1 M LiFSI + 0.1 M LiClO4 in DME/EC/FEC (10:7:3, v/v/v)

F1.0C0.2-DEF 1.0 M LiFSI + 0.2 M LiClO4 in DME/EC/FEC (10:7:3, v/v/v)

F0.9C0.3-DEF 0.9 M LiFSI + 0.3 M LiClO4 in DME/EC/FEC (10:7:3, v/v/v)

F1 1.68 M LiPF6 in DME/FEC (3:1, v/v)
F2 1.625 M LiPF6 + 0.0417 M LiClO4 in DME/FEC (3:1, v/v)
F3 1.583 M LiPF6 + 0.0833 M LiClO4 in DME/FEC (3:1, v/v)
F4 1.418 M LiPF6 + 0.25 M LiClO4 in DME/FEC (3:1, v/v)

LHCE 1 M LiFSI + DME/TTE (1:3.5, v/v)
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Table S3. Calculated HOMO and LUMO energy levels of solvation clusters with FSI- 
and ClO4

- anions. The DFT-calculated electronic properties include complexes with 
DME, EC, and FEC solvents, elucidating the synergistic effect of dual anions on 
reduction and oxidation stability.

System LUMO (eV) HOMO (eV)

ClO4
- 4.41 -3.06

FSI- 3.10 -4.36

Li+-ClO4
--DME -1.24 -6.64

Li+-FSI--DME -1.15 -8.19

2Li+-FSI--ClO4
--DME -3.19 -7.36

Li+-ClO4
--EC -1.78 -6.59

Li+-FSI--EC -1.66 -8.03

2Li+-FSI--ClO4
--EC -3.41 -7.35

Li+-ClO4
--FEC -2.03 -6.68

Li+-FSI--FEC -1.90 -8.14

2Li+-FSI--ClO4
--FEC -3.35 -7.56
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 Table S4. Performance summary of electrolyte research on Si-based anode in recent 
years.

Anode Capacity 
retention

Rate Lithium salt concentration 
and type

reference

Si/C 85.2%
(350 cycles)

0.33C
1 C = 1100 mA g-1

1.0 M LiFSI 
+ 0.2 M LiClO4

This
work

Si/C 73.4%
(300 cycles)

0.33 C
1 C = 1000 mA g-1

~3.95 M LiFSI 2

Si/C 84.6%
(50 cycles)

0.33 C
1 C = 1000 mA g-1

4.5 M LiFSI 3

Si/C 85.4%
(400 cycles)

0.5 C
1 C = 950 mA g-1

~4.3 M LiFSI 4

Si/C 61.6%
(250 cycles)

0.5 C
1 C = 700 mA g-1

1.0 M LiPF6 5

SiOx/C 83%
(80 cycles)

0.5 C
1 C = 650 mA g-1

0.8 M LiPF6 6

SiOx/C 78.5%
(500 cycles)

0.5 C
1 C = 800 mA g-1

~2.0 M LiFSI 
+ ~0.2 M LiPF6

7

Si/C 71.2%
(300 cycles)

0.5 C
1 C = 600 mA g-1

1.0 M LiPF6 8

SiOx/C 79.3%
 (200 cycles) 

0.5 C 
1 C = 1000 mA g-1 

1.0 M LiPF6 9

SiOx/C 48% 
(150 cycles) 

0.5C
1 C = 800 mA g-1 

1.0 M LiPF6 10

SiOx/C 85.4%
 (100 cycles) 

0.1C
1 C = 450 mA g-1 

1.0 M LiPF6 11

Si/C 72% 
(100 cycles) 

0.1C
1 C = 623 mA g-1

1.0 M LiTFSI 12

Si/C  98.11% 
(50 cycles) 

0.2C
1 C = 550 mA g-1

1.0 M LiPF6 13

SiOx/C  97.02% 
(100 cycles) 

0.5C
1 C = 1000 mA g-1 

1.2 M LiPF6 14

Si/C  70% 
(50 cycles) 

0.5C
1 C = 700 mA g-1 

1.0 M LiPF6 15

SiOx/C  71% 
(400 cycles) 

0.2C
1 C = 450 mA g-1 

1.0 M LiPF6 16

Si/C 95.3% 
(100 cycles)

0.5C
1 C = 450 mA g-1

1.15 M LiPF6 17
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Table S5. Fitted impedance parameters of Li‖Si/C cells with three different 
electrolytes.

E-Control-F F1.2-DEF F1.0C0.2-DEF

RSEI (Ω) Rct (Ω) RSEI (Ω) Rct (Ω) RSEI (Ω) Rct (Ω)

10th 5.12 8.07 1.73 15.01 1.17 12.06

250th 65.29 24.57 44.85 28.18 11.47 15.34
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