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Fig. S1. CV curves of Li||Al cells measured between 2.5 and 4.6 V at a scan rate of 1
mV s': (a) F1.2-DEF; (b) F1.0C0.2-DEF.
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Fig. S2. Corrosion behavior of aluminum (Al) current collectors under electrochemical
cycling: (a-c) Optical images of (a) pristine Al current collector (control) and (b, c) Al
collectors after 5 CV cycles (2.5 —4.6 V) in (b) F1.0C0.2-DEF and (c) F1.2-DEF; (d-f)
SEM images of (d) pristine Al (uncycled) and (e, f) Al collectors after 5 CV cycles in
(e) F1.0C0.2-DEF and (f) F1.2-DEF.
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Fig. S3. Raman spectra in a wavenumber range from 880 to 915 cm™'.
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Fig. S4. Raman spectra in a wavenumber range from 840 to 880 cm™.
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Fig. SS. CV curves of Li||Cu cells in the two studied electrolytes with the first scan

conducted from the open circuit potential (OCP) to 0 V vs. Li/Li".
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Fig. S6. LSV curves of Li||Al cells at a scan rate of 0.5 mV s in F1.2-DEF and
F1.0C0.2-DEF electrolytes.
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Fig. S7.Molecular dynamics (MD) simulation snapshots of electrolyte solvation
structures: (a) F1.2-DEF (1.2 M lithium bis(fluorosulfonyl)imide (LiFSI) in
dimethoxyethane (DME) / ethylene carbonate (EC) / fluoroethylene carbonate (FEC))
and (b) F1.0C0.2-DEF (1.0 M LiFSI + 0.2 M lithium perchlorate (LiClO,) in
DME/EC/FEC (10:7:3, v/iv/v)).
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Fig. S8. LSV curves of Li||Al cells at a scan rate of 1 mV s™! in different electrolytes.
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Fig. S9. Initial discharge/charge profiles of Li||Si/C cells in different electrolytes at
0.05C rate under 25 °C.
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Fig. S10. Average charge/discharge potentials of Li||Si/C batteries cycled at 0.33C
under 25 °C.
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Fig. S11. Cycling performance of Li||Si/C batteries with the conventional localized
high-concentration electrolyte (LHCE, 1.0 M LiFSI in DME/TTE (1:3.5, v/v)) at 0.33C
under 25 °C (0.001 — 1.6 V). The cell was initially activated with one cycle at 0.05C
(1c = 1100 mA g"'), followed by two cycles at 0.1C.

12



_—

o b @ F1.15C0.05-DEF

= 1000 @ F1.1C0.1-DEF
B F0.9C0.3-DEF

=)

(=]

(—]
1

=

(—]

(—]
1

200 +

0 = ] el I = 1 = I = ] = 1 =
0 50 100 150 200 250 300 350

Cycle Number

Fig. S12. Cycling performance of Li||Si/C batteries with F1.15C0.05-DEF, F1.1C0.1-
DEF, and F0.9C0.3-DEF electrolytes at 0.33C under 25 °C (0.001 — 1.6 V). All cells
were initially activated with one cycle at 0.05C (1C = 1100 mA g!), followed by two
cycles at 0.1C.

13



—~ 1200

o F1: 1.68 M LiPF, + DME/FEC (3:1, v/v) @ Fl
Iw F2:1.625 M LiPF + 0.0417 M LiClO, + DME/FEC (3:1, v/v) F2
-= 1000 F3:1.583 M LiPF; + 0.0833 M LiClO, + DME/FEC (3:1, v/v)
< F4:1.418 M LiPF, + 0.25 M LiClO, + DME/FEC (3:1, v/v) ) F3
g s
~
'S 600

S

=3

=

O 400-

=

o p( -

= 200

=?)

=3

w 0 L ] = L] i L] o 1 o ] =

0 50 100 150 200 250 300

Cycle Number

Fig. S13. Cycling performance of Li||Si/C batteries with F1, F2, F3, and F4 electrolytes
at 0.33C under 25 °C (0.001 — 1.6 V). All cells were initially activated with one cycle
at 0.05C (1C = 1100 mA g'), followed by two cycles at 0.1C.
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Fig. S14. Lithium-ion diffusion coefficients of the Si/C electrodes at the 10th cycle in

E-Control-F, F1.2-DEF, and F1.0C0.2-DEF electrolyte (after 3 formation cycles at

0.1C), as calculated from GITT voltage profiles in Fig. S15.
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Fig. S15. GITT profiles of Li||Si/C cells with different electrolytes to evaluate lithium

diffusion kinetics.
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Fig. S16. CV plots of Li||S1/C cells in F1.0C0.2-DEF and F1.2-DEF at a scan rate of
0.05 mV s1(0.001 — 1.6 V).
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Fig. S17. Tafel polarization measurements of Li* kinetics in (a) Li||L1i and (b) Si/C||S1/C
symmetric cells using F1.2-DEF and F1.0C0.2-DEF at 25 °C (Scan rate: 1 mV s!).
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Fig. S18. SEM images of (a) pristine Si/C anodes and (b-d) cycled Si/C anodes after
100 times in (b) E-Control-F, (c¢) F1.2-DEF, and (d) F1.0C0.2-DEF.
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Fig. S19. EDS analysis of chlorine element distribution on cycled Si/C electrodes. (a)
F1.2-DEF and (b) F1.0C0.2-DEF electrolytes after 100 cycles.
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Fig. S20. Charge/discharge profile of Si/C|[NCM8I11 cells in F1.2-DEF. The system

shows charge failure at 4.2 V.
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Fig. S21. Morphology of aluminum current collectors after electrochemical
cycling. SEM images of (a) pristine Al foil (uncycled), and Al foils after 10 cycles in

Si/C|INCMS811 full cells (2.5 - 4.4 V) using (b) F1.2-DEF and (c) F1.0C0.2-DEF
electrolytes.
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Fig. S22. The initial charge/discharge curves of Si/C|[NCMS8ll1cells at 0.1 C.
Substantial Li" consumption occurs during the initial cycle in both E-Control-F and

F1.0C0.2-DEF electrolytes.
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Fig. S23. Average Coulombic efficiency (Avg. CE) of Si/C|[NCMS811 full cells over
the first 100 cycles. (a) Avg. CE at a charge cutoff voltage of 4.2 V. (b) Avg. CE ata

charge cutoff voltage of 4.4 V.
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Table S1. Cost Comparison Between F1.0C0.2-DEF and Silicon-Compatible
Localized High-Concentration Electrolyte (Formulation 2: 1 M LiFSI + DME/1,1,2,2-
Tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE) (1:3.5, v/v)).! Price data were
obtained from Sigma-Aldrich (Merck Life Science) with prices current as of 4 July
2025. All chemicals were of battery grade purity (> 99.9%). The total electrolyte cost
was calculated from individual component costs normalized to 1L solution volume at
standard concentration (Lithium Salt Volume Excluded).

Component Price F1.0C0.2-DEF Cost Formulation 2 Cost
(RMB) (RMB) (RMB)
LiFSI 95229.80 / kg 187 g 17807.97 187g 17807.97
LiClO, 32676.76 / kg 21.28 g 695.36 - -
DME 2464.98 /L 500 mL 1232.49 2222 mL 547.22
EC 18304.44 / kg 498.75 g 9129.34 - -
FEC 30663.57 / kg 218.1¢g 6687.72 - -
TTE 23092.80 / kg - - 119232 g 27534.01
Total - - 35552.88 - 45889.20
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Table S2. Electrolyte formulations in this study.

Electrolyte code

Electrolyte formulation

E-Control-F 1.0 M LiPF¢ in EC/EMC (ethyl methyl carbonate)/DMC
(dimethyl carbonates) (1:1:1, viv/v) + Swt.% FEC
F1.2-DEF 1.2 M LiFSI in DME/EC/FEC (10:7:3, v/iv/v).

F1.15C0.05-DEF

1.15 M LiFSI + 0.05 M LiClO4 in DME/EC/FEC (10:7:3, v/v/v)

F1.1C0.1-DEF 1.1 M LiFSI + 0.1 M LiClO4 in DME/EC/FEC (10:7:3, v/v/v)
F1.0C0.2-DEF 1.0 M LiFSI + 0.2 M LiClO4 in DME/EC/FEC (10:7:3, v/v/v)
F0.9C0.3-DEF 0.9 M LiFSI + 0.3 M LiClO4 in DME/EC/FEC (10:7:3, v/v/v)
F1 1.68 M LiPF¢ in DME/FEC (3:1, v/v)
F2 1.625 M LiPF4+ 0.0417 M LiClO4 in DME/FEC (3:1, v/v)
F3 1.583 M LiPFs+ 0.0833 M LiClO4 in DME/FEC (3:1, v/v)
F4 1.418 M LiPF¢+ 0.25 M LiCIO4 in DME/FEC (3:1, v/v)
LHCE 1 M LiFSI + DME/TTE (1:3.5, v/v)
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Table S3. Calculated HOMO and LUMO energy levels of solvation clusters with FSI-
and ClO4 anions. The DFT-calculated electronic properties include complexes with
DME, EC, and FEC solvents, elucidating the synergistic effect of dual anions on
reduction and oxidation stability.

System LUMO (eV) HOMO (eV)
ClOy 4.41 -3.06
FSI- 3.10 -4.36
Li*-Cl04,-DME -1.24 -6.64
Li*-FSI--DME -1.15 -8.19
2Li*-FSI-Cl04,-DME -3.19 -7.36
Li*-ClO4-EC -1.78 -6.59
Li*-FSI-EC -1.66 -8.03
2Li*-FSI-Cl04-EC -3.41 -7.35
Li*-ClO4-FEC -2.03 -6.68
Li*-FSI-FEC -1.90 -8.14
2Li*-FSI-ClO4-FEC -3.35 -7.56
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Table S4. Performance summary of electrolyte research on Si-based anode in recent

years.
Anode Capacity Rate Lithium salt concentration [reference
retention and type
Si/C 85.2% 0.33C 1.0 M LiFSI This
(350 cycles) [1 C=1100mA g! + 0.2 M LiClOy4 work
Si/C 73.4% 0.33C ~3.95 M LiFSI 2
(300 cycles) |1 C=1000 mA g!
Si/C 84.6% 033C 4.5 M LiFSI 3
(50 cycles) 1 C=1000 mA g'!
Si/C 85.4% 05C ~4.3 M LiFSI 4
(400 cycles) 1 C=950 mA g!
Si/C 61.6% 05C 1.0 M LiPF¢ 5
(250 cycles) 1 C=700mA g
SiO,/C 83% 05C 0.8 M LiPFg 6
(80 cycles) 1 C=650mA g!
SiO,/C 78.5% 05C ~2.0 M LiFSI 7
(500 cycles) 1 C=800mA g'! +~0.2 M LiPFg
Si/C 71.2% 05C 1.0 M LiPFg 8
(300 cycles) 1 C=600mA g'!
Si0O,/C 79.3% 05C 1.0 M LiPFg 9
(200 cycles) |1 C=1000 mA g!
Si0,/C 48% 0.5C 1.0 M LiPFg 10
(150 cycles) 1 C=800mA g
Si0,/C 85.4% 0.1C 1.0 M LiPF¢ 11
(100 cycles) [1C=450mA g!
Si/C 72% 0.1C 1.0 M LiTFSI 12
(100 cycles) 1C=623mA g'!
Si/C 98.11% 0.2C 1.0 M LiPFg 13
(50 cycles) 1C=550mA g
SiO,/C 97.02% 0.5C 1.2 M LiPF¢ 14
(100 cycles) |1 C=1000 mA g!
Si/C 70% 0.5C 1.0 M LiPF¢ 15
(50 cycles) 1 C=700mA g
Si0O,/C 71% 0.2C 1.0 M LiPFg 16
(400 cycles) 1C=450mA g'!
Si/C 95.3% 0.5C 1.15 M LiPF, 17
(100 cycles) 1C=450mA ¢!
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Table S5. Fitted impedance

parameters of LilSi/C

cells with three different

electrolytes.
E-Control-F F1.2-DEF F1.0C0.2-DEF
Rsgr (€2) R (2) Rsgr (2) R (2) Rggr (€2) R (2)
10th 5.12 8.07 1.73 15.01 1.17 12.06
250th 65.29 24.57 44.85 28.18 11.47 15.34
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