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1 Supplementary Note S1

2 EIS method: According to the Warburg diffusion in the low-frequency region, the

3 diffusion coefficient of the Li* ion(D) is calculated using the following equation:

r 2

n“F“ACA,, (1)

5 where R is the ideal gas constant, T is the absolute temperature, F is the Faraday
6 constant, C is the concentration of Li* in the unit cell, A is the surface area of
7 electrode in cm? n is the number of electrons per molecule during the

8 charge/discharge process, and Aw is the Warburg factor, which is related to Z’
9 Supplementary Note S2

10 GITT method: The lithium diffusion coefficient (Dy;") for the cathodes is derived

D _ 4 mBVm 2 AES 2
it omr| MgS | \AE, 2

13 Where 1(s) is the duration of the current pulse. mg (g) and Mg (g mol!) represent the

11 from Equation 2:

12

14 mass and molecular weight for the material, respectively.V(cm? mol-!) is the molar
15 volume for the active material, obtained from standard crystallographic data. S (cm?)
16 is the surface area of the active material, obtained from standard crystallographic
17 data.S (cm?) is the surface area of the active material in the cathode. AEj is the steady-
18 state voltage change due to the current pulse, and AE; is the voltage change during the

19 constant current pulse.
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21 Scheme S1. (a) PI-BPADA binder synthesis. (b) Chemical structures of synthesized PI binders.
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2 Fig. S1. FTIR spectra of the synthesized PI binders.

4 Fig. S2. SEM images of initial NCMS811 Cathodes with (a) PI-BPDA binder and (b)
5 PI-BTDA binder.



Fig. S3. The TEM image with low-magnification and large view files of initial

PVDF/NCM cathode.

Table S1

Peel strength of NCMS811 cathodes using PVDF or PI as binders

Materials Average force Peel strength
(ND (N mm™)
PI-BPADA/NCM 9.28 0.42

PI-BPDA/NCM 8.55 0.39
PI-BTDA/NCM 10.86 0.42

PVDF/NCM 7.31 0.24
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2 Fig. S4. Peel strength of NCM811 cathodes with PVDF/MCM and PI/NCM.
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Fig. S5. Cycling performance of NCM811 cathodes with different binders after 100
cycling at 1C in the voltage range of (a) 2.5-4.3 V and (b)2.5-4.5 V. Voltage profiles

corresponding rate performance for different cycles in the voltage range of 2.5-4.3 V,
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1 Fig. S6. Cycling performance of graphite| NCMS811 full cells employing PVDF or PI-
2 BPADA as the cathode binder
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6 Fig. S7. CV Curve of the cathode with PI-BPADA + Super P on Al current collector

7 with a scan rate of 0.1 mV s
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1 Fig. S8. Linear response of the peak current density (/,,) as a function of square root of

2 scan rate for PI-BPDA/NCM cell and PI-BTDA/NCM cell.
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3 Fig. S9. Nyquist plots of PI-BPDA/NCM and PI-BTDA/NCM (a) at the initial state
4 and (b) after 100 cycles in the voltage range of 2.5-4.3 V at 0.2C; insets are equivalent

5 circuit models for fitting impedance spectra of initial and cycled cells.
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Fig. S10. O 1s and F 1s XPS spectra of (a,b) PVDF/NCM and (c,d) PI- BPADA/NCM
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6 Fig. S11. SEM images of the (a) PVDF/NCM cathode and (b) PI-BPADA/NCM

7 cathode after 100 cycles of cell in the voltage window of 2.5-4,3V.



