Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

Supporting Information

MXene-Derived Tetrathiafulvalene Metal-Organic Framework for Ultra-Long Supercapattery

Nasrin Kabeer^a, Yusuf Khan^{b, c}, Mostafa Zeama^a, Jehad K. El-Demellawi^b, Anita Justin^a, Sharath Kandambeth^a, Vinayak S. Kale^a, Osama Shekhah^a, Husam N. Alshareef *b,c and Mohamed Eddaoudi *a

Table of Contents

Section S1	Electrochemical calculations	S2-S3
Section S2	Material Characterizations	S3-S6
Section S3	Electrochemical Characterization	S6-S8
Section S4	Electrochemical Performances tables	S8-S9
Section S5	References	S9

^a Functional Materials Design, Discovery and Development Research Group (FMD3), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia

^b Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia

^c Materials Science and Engineering, Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955–6900, Saudi Arabia.

S1: Electrochemical calculations

The BioLogic SP-300 Modular Research Grade Potentiostat/Galvanostat/FRA electrochemical workstation was used to test the electrochemical performance of synthesized MOFs and assembled supercapattery using the cyclic voltammetry (CV), galvanostatic charge discharge (CD), and electrochemical impedance spectroscopy (EIS) techniques. The active materials V₂CT_x-TMOF/VOSO₄-TMOF/activated carbon were combined with PVDF binder and super-P carbon as a conducting agent in a weight ratio of 75:20:5 to create the working electrode. The *N*-Methyl-2-pyrrolidone (NMP) solvent was used to make a paste for this electrode material, which was then applied to a 2 x 4 cm² nickel foam substrate. The electrode materials were loaded at around 3 mg/cm², and the coated substrate was vacuum oven dried at 50 °C overnight. Hg/HgO and Pt foil were used as a reference electrode and a counter-electrode, respectively. For all the electrochemical analysis, 3 M KOH was used as an electrolyte. The CV and CD experiments were carried out at different scan rates and various current densities, respectively. ^{1,2}

The specific capacity can be calculated using the following equation:

$$Q_{sp} = \frac{I \,\Delta t}{m} \tag{1}$$

where Q_{sp} is the specific capacity (C/g), I is the charge-discharge current (A), Δt is the total discharge time (sec), and m is the total active mass of the electrode material (g). For specific capacitance in F/g

$$Q_{sc} = \frac{I \,\Delta t}{m \Delta v} \tag{2}$$

Total capacitance of the device is calculated using,

$$Q_t = \frac{I \times \Delta t}{M} \tag{3}$$

$$Q_{SP} = 4 \times Q_t \tag{4}$$

Here, Q_t is the total specific capacity of the fabricated device (C/g), Q_{sp} is the specific capacity of the electrode material (C/g), I is the discharge current (A/g), Δt is the discharge time (sec), and M is the total active mass of both electrodes (g). The specific energy and specific power of the device were calculated from the discharge profile using the following formula

$$E = \frac{1}{2} Q_t V \tag{5}$$

$$P = \frac{E}{\Delta t} \tag{6}$$

E is the specific energy (Wh/kg), and P is the specific power (W/kg) based on the total mass of the positive and negative electrode materials. The EIS experiments were performed with 0 V bias and a sinusoidal signal of 5 mV, with a frequency range of 10 mHz to 100 kHz. EIS data were analyzed using a Nyquist plot.

S2: Material characterization

Figure S1: XRD profiles of commercially available $V_2AlC\ MAX$ phase and etched $V_2CTx\ MXene$



Figure S2: SEM images of etched V₂CTx MXene.

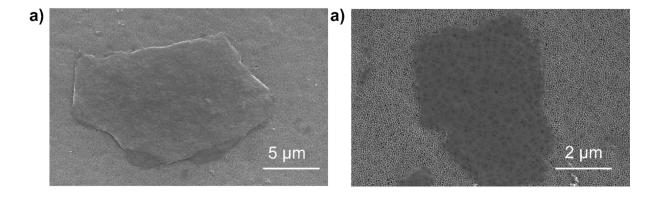


Figure S3: Pore size distribution curve of V₂CT_x-TMOF.

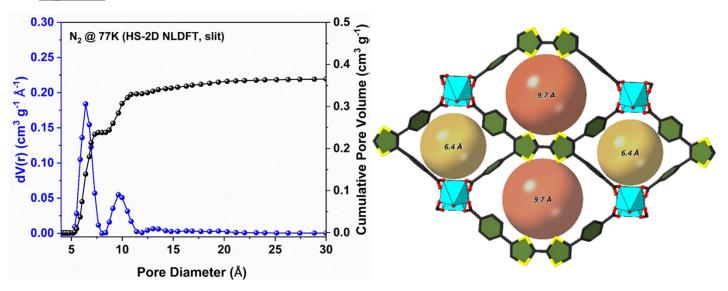


Figure S4: N₂ adsorption-desorption isotherm of VOSO₄-TMOF MXene.

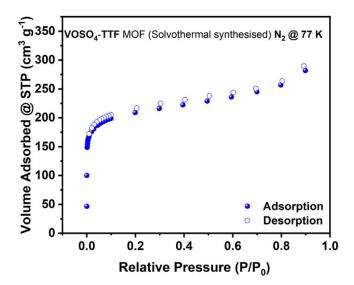
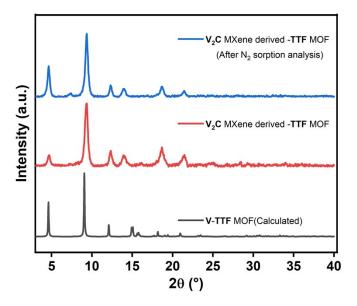



Figure S5: XRD images of V₂CTx-TMOF before and after N₂ sorption analysis

<u>Figure S6:</u> TGA curves of solvothermal synthesized VOSO₄-TMOF and MXene derived V_2CT_x -TMOF.

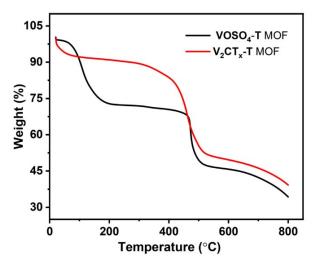
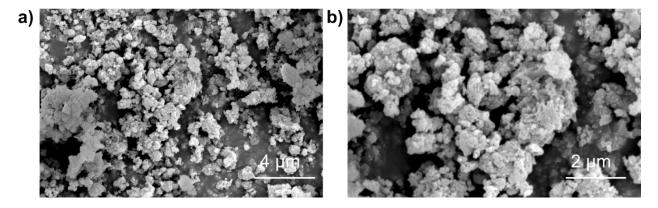
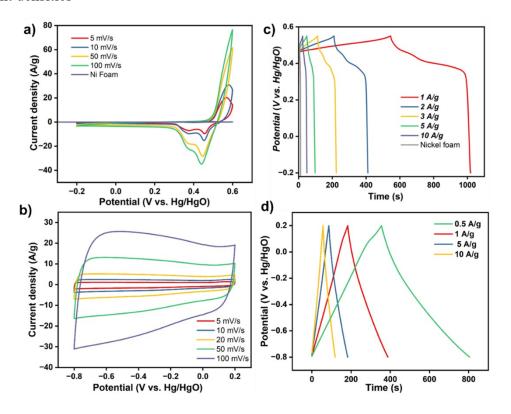




Figure S7: SEM images of solvothermal synthesized VOSO₄-TMOF

S3: Electrochemical characterization

<u>Figure S8:</u> CV, GCD curves of a, c) V₂CT_x-TMOF, b, d) Activated carbon at different scan rates and current densities

<u>Figure S9:</u> CV curves of V_2CT_x -TMOF//AC supercapattery deice a) device design b) device tested in different potential differences at scan rate of 5 mV/s

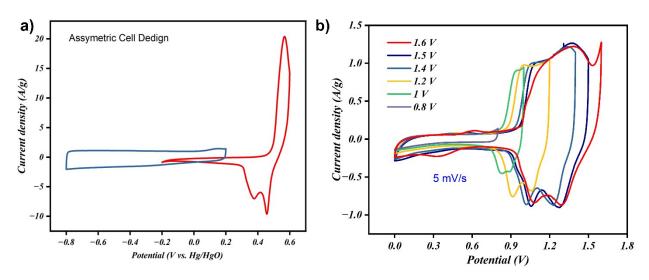
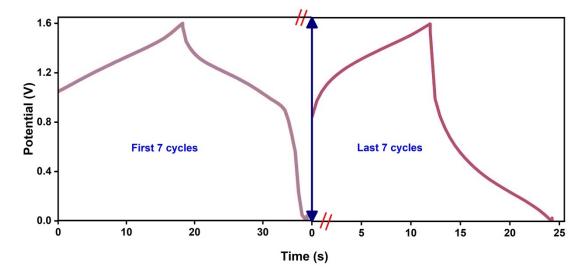



Figure S10: 7 set GCD profile of V_2CT_x -TMOF//AC supercapattery device during the initial cycles and final cycles when reaching 30,000 cycles.

S4: Electrochemical performance tables

<u>Table S1:</u> Three electrode capacitance (single electrode measurements) comparison for V_2CT_{x-} TMOF, VOSO₄-TMOF, and AC carbon.

V ₂ CT _x -TMOF		VOSO ₄ -TMOF			AC CARBON			
Current density	Specific capacity	Specific Capacitance	Current density	Specific capacity	Specific Capacitance	Current density	Specific capacity	Specific Capacitance
1 A/g	480 C/g	640 F/g	1 A/g	395 C/g	526 F/g	0.5 A/g	225 C/g	225 F/g
2 A/g	414 C/g	552 F/g	2 A/g	360 C/g	480 F/g	1 A/g	212 C/g	212 F/g
3 A/g	348 C/g	464 F/g	5 A/g	320 C/g	426 F/g	5 A/g	180 C/g	180 F/g
10 A/g	310 C/g	413 F/g	10 A/g	279 C/g	372 F/g	10 A/g	165 C/g	165 F/g

<u>Table S2:</u> V₂CT_x-TMOF//AC hybrid supercapattery device (Full cell device) performance, indicating specific energy and specific power with device capacitance

indicating	specific	energy and	specific p	ower with	1 device	capacitance
Current Density	Total Capacity	Total Capacitance	Specific capacitance	Specific Capacity	Specific Energy	Specific Power
1 A/g	222 C/g	138 F/g	552 F/g	888 C/g	50 Wh/kg	1264 W/kg
2 A/g	185 C/g	116 F/g	464 F/g	740 C/g	42 Wh/kg	1596 W/kg
3 A/g	170 C/g	106 F/g	424 F/g	680 C/g	38 Wh/kg	1753 W/kg
5 A/g	144 C/g	90 F/g	360 F/g	560 C/g	32 Wh/kg	2504 W/kg

S5: References

- 1 K. Nasrin, K. Subramani, M. Karnan and M. Sathish, J. Colloid Interface Sci, 2021, 600, 264–277.
- 2 K. Choi, I. K. Moon and J. Oh, *J. Mater. Chem. A*, 2019, **7**, 1468–1478.