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Supplementary Experimental Section
Preparation of catalysts

Freestanding hierarchical FeCoNiCuSnP high-entropy phosphides (HEPs) electrodes
prepared through a simple electrodeposition process as cathodes under a constant current
density of -1.5 A cm™ for 40 s at room temperature with an electrochemical workstation (Zahner
iM6e). Typically, a standard three electrode system was employed with Hg/Hg>SO4 as the
reference electrode, graphite as the counter electrode and the carbon fiber paper (CFP) as the
working electrode to be a substrate. Meanwhile, a homogeneous aqueous solution was used as
electrolytes involving 0.075 M of FeCl>*4H>0, 0.075 M of CoCl,'6H,0, 0.15 M of NiCl>-6H>0,
0.021 M of CuCl>:2H20, 0.015 M of SnCl», 20 mM of NaH>PO: and 0.2 M of HCl to synthesize
Feo.13C00.26N10.14Cu0.31Sno.12Po.o4. In addition, FeNiCuSnP, FeCoCuSnP, FeCoNiSnP,
FeCoNiCuP and CoNiCuSnP were prepared via the same approach mentioned above except for
excluding the according precursor salt for the electrolytes that the sample lacks compared with
FeCoNiCuSnP while keeping the total ion concentration unchanged. Besides, FeCoNiCuSn
HEAs were prepared via the same approach mentioned above except for excluding the
NaH2POs,.

Characterization of catalysts

The X-ray diffraction patterns (XRD) were obtained with a Rigaku-D/max 2500 V X-ray
diffractometer with Cu Ka radiation (A = 1.5418 A). The morphologies of the catalysts were
observed by field emission scanning electron microscopy (FE-SEM, JEOL JEM-2100F at 30
kV). The microstructures and element distributions of the catalysts were measured by

transmission scanning electron microscopy (TEM, JEOL JEM-200CT at 200 kV) coupled with



selected area electron diffraction (SAED) as well as EDS. X-ray photoelectron spectroscopy
(XPS) analysis was performed on a Thermo ESCALAB 250 electron spectrometer using Al Ko
X-rays.
Electrochemical measurements

The electrochemical catalytic performance throughout this work was conducted in a N»-
saturated 1.0 M KOH solution using a standard three-electrode electrochemical station (Zahner
iM6e) consisting of a catalyst as the working electrode, a graphite rod as the counter electrode,
and a Hg/HgO electrode as the reference. All potentials in this work were calibrated with a
reversible hydrogen electrode (E vs. RHE) according to the Nernst equation. The as-prepared
HEPs were directly used as the working electrodes followed by washing with deionized water
to remove the residual electrolytes. For 20 wt.% Pt/C electrodes, 5 mg of the samples and 5 pL
of 5% Nafion solution were placed in a 1 mL mixture of water/ethanol with a volume ratio of
3:1 and dispersed by ultrasonication for at least 30 min to form a homogeneous ink. Then, 5 pL
of this ink was carefully dropped onto a glassy carbon electrode (GCE) with a diameter of 3
mm and dried in air atmosphere. Linear sweep voltammetry (LSV) was conducted with a scan
rate of 5 mV s’'. All polarization curves were automatically corrected by 85% iR compensation
for ohmic losses arising from active materials, substrate, and solution resistances. A series of
cyclic voltammetry (CV) measurements were carried out at sweep rates of 5 ~ 50 mV s at
nonfaradaic overpotentials to demonstrate the current charging and discharging capacitance for
estimating the double-layer capacitance (Cai). The electrochemical surface area (ECSA) value
was obtained according to the equation ECSA = Ca/Cs, where Cq is the measured double-layer

capacitance and C; is the specific capacitance. In this work, we assumed a Cs value of 0.04 mF



2 according to the literature'. The turnover frequency (TOF) value of the reaction was

cm’
calculated by the equation TOF=(j X Ageo)/(n X F X Nsite), Where j is the current density at an
overpotential of 0.206 V vs. RHE, A4g, is the geometric area of the electrode, # is the number
of electrons involved (2 for HER), F' is the Faraday constant, and N is the total number of
metal sites (moles) on the electrode determined by EDS. Electrochemical impedance
spectroscopy (EIS) was carried out from 0.1 to 10° Hz at a constant potential of -100 mV vs.
RHE. The stability measurement was carried out at a static potential of -190 mV vs. RHE with
an initial current density of 1 A cm™ by a chronoamperometry method.
DFT calculations

DFT calculations were using the projector-augmented-wave (PAW) potentials with
Perdew-Burke-Ernzerhof (PBE) of exchange-correlation interactions as implemented in the
Vienna Ab initio Simulation Package (VASP) code. The projected augmented wave (PAW)
potentials to describe the ionic cores and take valence electrons into account using a plane wave
basis set with a kinetic energy cutoff of 500 eV. Partial occupancies of the Kohn-Sham orbitals
were allowed using the Gaussian smearing method and a width of 0.05 eV. The electronic
energy was considered self-consistent when the energy change was smaller than 10° eV. A
geometry optimization was considered convergent when the force change was smaller than -
0.05 eV/A. Grimme’s DFT-D3 methodology was used to describe the dispersion interactions.
The Brillourin zone was sampled with a gamma-centered grid 3x3x1 for FeCoNiCuSn and
FeCoNiCuSnP through all the computational process. The increased kpoints of 6x6x2 was used

to analysis electronic structure, respectively. In addition, the materials studio was used to aid

model construction. The VASPKIT package was employed to aid in the analysis of electronic



structure.
The change in Gibbs free energy at each step was calculated based on the following
equation:
AG = AE + AZPE —TAS
where AE belongs to the reaction energy obtained by the total energy difference between
the reactant and product molecules absorbed on the catalyst surface, AZPE represents the
correction of zero-point energy, T refers to the temperature (298.15 K) and AS is the entropy

change.



Supplementary Figures
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Fig. S1 Photograph of the as-prepared freestanding FeCoNiCuSnP HEP electrodes.
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Fig. S2 (a) XRD images of FeCoNiCuSn and FeCoNiCuSnP, respectively. (b) HR-TEM
analysis of FeCoNiCuSnP HEPs. (c) SAED results of FeCoNiCuSnP HEPs. (d) SAED results
of FeCoNiCuSn.
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Fig. S3 Morphology and elemental distribution of the senary FeCoNiCrCuMoP HEPs. (a)
STEM bright field (BF) image (the inset shows the SAED image.) and (b-h) EDS mapping of

Mo, Fe, Co, Ni, Cu, and P, respectively.
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Fig. S4 Comparison of the overpotentials at 10 mA cm™ for samples with different elemental

ratios consisting of 5 metals for HER performed in 1.0 M KOH alkaline conditions.
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Fig. S6 LSV curves with iR loss correction of HEP-a for HER performed in 1.0 M KOH alkaline

conditions at different temperatures.
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Fig. S7 Comparison of the overpotentials at (a) 10 mA cm™, (b) 500 mA cm™, respectively, and
the Tafel slopes for different materials for HER performed in 1.0 M KOH alkaline conditions.

(The specific sample names and references are listed in Supplementary Table S1 and S2.)
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Fig. S8 Cyclic voltammetry (CV) curves at various scan rates in the region of 0.15 to 0.25 V
(vs. RHE) for different samples. The double-layer capacitance (Cai) of samples was estimated
on the basis of the CV curves through the capacitive currents plotted against the scan rate at 0.2
V (vs. RHE) without faradaic process, which has been universally considered to be linearly

proportional to the electrochemical surface area (ECSA).
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Fig. S9. Elemental distribution of HEP-a collected after stability tests. (a) STEM bright field
(BF) image and (b-f) EDS mapping of Sn, Fe, Co, Ni, Cu and P, respectively.
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Fig. S10 Photograph of the as-prepared large freestanding FeCoNiCuSnP HEP electrodes.
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Fig. S11. Elemental distribution of large FeCoNiCuSnP HEP electrodes. (a) STEM bright field
(BF) image and (b-f) EDS mapping of Sn, Fe, Co, Ni, Cu and P, respectively.
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Fig. S12 Comparison of LSV curves with iR loss correction of samples with different sizes

prepared by far-from-equilibrium electrosynthesis.
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Fig. S14. XPS spectra of FeCoNiCuSnP HEPs reclaimed after 5000 CV cycles. (a) Fe 2p, (b)
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Fig. S15. Models of samples constructed for DFT calculations. (a) FeCoNiCuSn, and (b)
FeCoNiCuSnP.
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Supplementary Tables

Table S1. The atomic percentage of constituent metals in FeCoNiCuSnP HEPs.

Atomic percentage
Element p &

(at.%)
Fe 13.0
Co 26.6
Ni 13.9
Cu 30.9
Sn 11.8
P 3.8
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Table S2. Comparison of the overpotentials at 10 mA cm™ and the Tafel slopes for different
materials for HER in 1.0 M KOH alkaline conditions.

Overpotential Tafel slope

Catalysts (mV) (mV dec) Ref.
FeCoNiCuSnP 52 37 This work
Ni(OH)>@Ni/CP 106 88 3
Ni/NiO/C-500 127 119 4
NisSn 122 84 3
Ni nanoparticle 180 111 6
Ni/CePO4 120 72 7
c-CoSe»/CC 190 85 8
Co(PO3)2@NPC/MoS: 119 142 ?
N-C/Co/Mo,C 142 98.45 10
TiO/Co-S 107 83.3 1
Fe-Co-MOFs 182 157.8 12
Fe-C3N4-TU 206 82 13
MoS>@Fe/Ni-MOFs00-3 140 158 14
P3-doped Fe/NF 158.17 105.2 15
Fe-doped CoP 230 75 16
Cu/NizS/NF 130 84.19 17
Cu/Ti3CaTx 128 126 18
CuO@NH»-Ui0-66 166 87 19
CuzSe@NiFe-LDHNS 195 69 20
NiCuyg.57/NizS2/TM 239 86 21
Ru0,/Co0304 89 91 22
Ru/C3N4/C 79 69 23
Pt/VS,/CP 77 39.46 24
Pt;Bi,S; 61 51 25
Pt/Co,P/NiaP/NF 75 64 26
Pd/Ce02/N, S-rGO 75 44 27
Pd-TiN NSs 62.5 45 28
Pd—NPs 94 114.38 29
AIMnYNiCoAu 124 69 30
Mo-Ni-CoP-3 76 60 31
NiCoFeP 131 56 32
NiCoP 130 93 33
Al-Ni,P/TM 129 98 i
Nii sCuo2-P 78 70 33
CoP3;@Cu/Cu 92 82 36
CoFeNiP/NF 104 108 37
FeCoNiCrMn HEMP 136 85.5 38
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Table S3. Comparison of the overpotentials at 500 mA cm™ and the Tafel slopes for different

materials for HER in 1.0 M KOH alkaline conditions.

Overpotential

Tafel slope

Catalysts (mV) (mV dec™) Ref.
FeCoNiCuSnP 242 37 This work
Pt/C@CC 520.4 49.5 39
Pt/C/NF 360 32 40
IrFe/NC 430 30 4
NisN/Pt 280 36.5 42
IrNi-FeNis/NF 248.6 66.95 43
IrNi/NF 320 109.76 43
MnOx/NiFeP/NF 255 41.8 a4
Ni2Ps-NisNbsP4/PCC 287 64.2 4
NiConp-P 283 112 46
NiCos)-P 350 116 46
NiCownr)-P 380 130 46
N-MoO,/Ni3S2/NF 430 76 47
NiFe-LDH/NF 460 164 40
Ni-V203/NF 350 173.71 48
Ni/NF 460 240.2 48
NiTex NWs 436 69 49
NiCo 302 148 30
CoMoSx/NF 269 94 >
CoP3-Nb,P 317 72.8 52
Co-N-C 272 67.6 >3
Co9Ss-hep 530 99.2 >4
Fe@Co9Ss-hcp 298 66.2 >4
SnFeSxOy/NF 249 90 33
FeSxOy/NF 380 72 33
FeNis/NF 500 124.47 43
Mo,C@CC 578.5 91.1 39
WC@CC 437.6 79.2 39
WC-Mo,C@CC 309.3 61.6 39
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Table S4. The specific values of the corresponding parameters achieved from the equivalent

circuit for different samples.

Catalysts Rs Rer CPE-T CPE-P
(ohm) (ohm) (a.u.) (a.u.)
FeCoNiCuSnP 3.59 13.72 0.0943 0.83
FeNiCuSnP 3.32 37.68 0.0568 0.87
FeCoCuSnP 3.17 41.57 0.0696 0.82
FeCoNiSnP 3.24 49.56 0.0634 0.84
FeCoNiCuP 3.86 92.38 0.0947 0.79
CoNiCuSnP 4.61 106.00 0.1042 0.80
FeCoNiCuSn 2.46 290.50 0.0215 0.86
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