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Fig. S1 The schematic diagram of the Sb doping CIGS precursor film preparation

process.

Table S1. Elemental analysis of the composition of the precursor films with different

Sb content from EDS results.

Original feeding Sb content (Sb/Cu%) Measured Measured Measured
in the Precursor film Sb/Cu Ga/(Ga+In) Cu/(In+Ga)
0% 0 0.30 0.92
2% 0.017 0.30 0.91
5% 0.044 0.31 0.91
8% 0.078 0.31 0.92
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Fig. S2 (a) XPS spectra of Cu 2p core levels, (b) In 3d core levels, (c) Ga 2p core levels,

(d) S 2p core levels and Se 3p core levels, (e) Se 3d core levels for the typical samples

CIGSSe -0Sb and 5Sb.

Table S2. The XPS analysis of the typical samples CIGSSe-0Sb and 5Sb.

Absorber Sb/Cu Cu/(In+Ga) Ga/(Ga+In) Se/(S+Se)
CIGSSe-0Sb 0 0.95 0.33 0.92
CIGSSe-5Sb 0 0.98 0.26 0.97
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Table S3. The EDS analysis of Sb/Cu for 5Sb precursor film at different selenization

stages.
Sb (Sb percentages
Sample Selenization time Sb/Cu relative residual values

normalized to 0 min)

Omin 0.044 100%

5Sb Precursor film 8min 0.035 79.5%
15min 0.018 40.9%
26min 0 Not detected

Supplementary Note 1.

For the evolution of Sb changes during the selenization process as shown in Table
S3, the content of Sb gradually decreases, especially during the high temperature
selenization (570 °C) stage , and nearly no Sb can be detected in the final absorber film,

which also indicate that Sb element nearly evaporated during the whole selenization as

film crystallization proceeded.
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Fig. S3 (a) The temperature evolution during the CIGSSe selenization process. (b) The
XRD patterns of CIGSSe precursor film doping 0 and 5% Sb (named as 0Sb and 5Sb
precursor film) selenized at 8min and 15 min during the selenization. (c) The Gaussian

fitting FWHM of (112) diffraction peak OSb and 5Sb precursor film at 8min and 15 min

during the selenization.
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Fig. S4 Statistical results of (a) PCE, (b) Voc, (¢) Jsc, and (d) FF of cells C-0Sb, C-2Sb,
C-5Sb and C-8Sb, respectively.
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Fig. S5 (a) The Fitting results of the shunt conductance G. (b) Diode ideality factor (A)
and series resistance (Rs) for cells C-0Sb and C-5Sb.

Supplementary Note 2.
The J-V characteristics of solar cells satisfy the single-exponential diode equation
as follows [51:521;

AKT(V -R
/- ]Oe[q/ WV -R )

+ G,V -], 2-1)
in which the devices parameters, such as the shunt conductance (Gj,), series
resistance(R;), reverse saturation current density (Jp), and diode ideality factor (A), we
can easily obtain the shunt conductance G from the figure dJ/dV versus Voltage. By

fitting dJ/dV to the linear portion of the (J+Jsc-GV)! curve, we can obtain the Diode

ideality factor (A) and series resistance (Rgs) for each sample.
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Fig. S6 The bandgap of cells C-0Sb and C-5Sb extracted from their EQE curves.
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Fig. S7 The temperature dependent PL for samples (a) CIGSSe-0Sb and (b) 5Sb with

temperature ranging from 8K to 240K excited by a 532nm continuous laser, and the

excited power is 3W/cm?.
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Fig. S8 —fdC/df spectra measured between 80 and 300 K with an interval of 10 K for

cells (a) C-0Sb and (b) C-5Sb.
Supplementary Note 3.

For the admittance spectroscopy (AS) test analysis, the main principle can be

explained by the following equation [S3-56l:

wy = 2mé,T*exp( — E/kT) (3-1)

where ©0 is the circular frequency of the test signal at which the capacitive plunge
occurs, $o is the pre-exponential factor comprising all temperature-independent terms.

The above equation can be also rewritten as

Wo

In (F) =In(2¢,) - E,/kT

(3-2)
Wo

A linear fit is performed with T? as the dependent variable and 1/T as the
independent variable. The slope is (Ea/ k) and the intercept is In (260). The slope allows
the energy level position of a defect to be calculated, while the intercept is calculated

at the junction. The intercept is used when fitting the concentration of defect states at a

given energy level with parameters, calculated as follows:

Vi dC w

NED = - o)
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In which the V'bi and Wd can be obtained from the C-V curves for each sample.
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Fig. S9 Temperature dependent J-V curves of cells (a) C-0Sb, (b) C-5Sb.

Supplementary Note 4.

The analysis of the light J-V results leads to Voc versus T to fit the activation
energy Ea of the complex mechanism dominated by the space charge region, can be

calculated by the following equation [83:54;

E

A
V,-=—-AkT/qgl
oc q /q "(]oo/JL) -1

in which where 4 | Joo , and Ji are the diode ideality factor, reverse saturation

current prefatory, and photocurrent, respectively. The intercepts of the linear

extrapolation to 0 K provide activation energy Ey for each sample.
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Fig. S10 The temperature-dependent dark-state J-JV curves for cells (a) C-0Sb, (b) C-

5Sb from 80K to 320K.
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Table S4. The fitting results extracted from the TRPL curves of cells C-0Sb and C-5Sb.

Sample A1 rl/ns A2 ‘rz/ns rave/ns

C-0Sb 0.89 0.79 0.11 3.91 1.97

C-5Sb 0.77 1.37 0.23 5.88 3.9
Supplementary Note 5.

The minority carrier lifetime can be fitted by the following biexponential equation

[S7].

where A, A, are the amplitude coefficients representing magnitudes of the two decay

processes, ty is the initial time, t; and 1, are the time constants for the slow decay and

fast decay, respectively. The average lifetime is defined as taye = (A 172+ Ay12)/ (AT +

A2’L'2) .
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Fig. S11 (a) Moisture stability, (b) Heat stability and (c) Light stability of cell C-5Sb.
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Table S5. The summary of typical solution-processed CIGSe solar cells prepared by

different doping methods.

Voc Jsc FF Eg PCE Thickness PCE/pm
Absorber  Doping method 5 Ref.
V) mA/em’) (%) (V) (%) (um) (%)
CIGSSe Na doping 0.6 26.8 636 1.18 103 2 5.15 S8
Na and K
CIGSSe ) 0.62 30.8 62.6 / 12.0 1.3 9.23 S9
Codoping
CIGSSe K doping 0.62 33.1 735  1.16 15 1.3 11.53 S10
CIGSSe K doping 0.66 33.61 72.65 124 16.02 1.24 12.91 S11
CIGSSe K doping 0.643 37.75 73.06 1.14 17.74 2 8.87 S12
CIGSSe Ag doping 0.63 34.44 729 1.19 15.82 1.2 13.18 S13
This
CIGSSe Sb doping 0.638 35.5 72.08 1.18 16.33 1.2 13.6 K
wor
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