

Supporting Information

Simultaneously enhance the energy storage, transparency, and hardness properties of $K_{0.5}Na_{0.5}NbO_3$ -based ceramics via synergistic optimization strategy

Chenxi Liu¹, Zhonghua Dai^{1*}, Yuanyuan Zheng¹, Xujun Li¹, Ruijian Dai², Yuxing Liu³, Weiguo Liu¹, Shun Zhou^{1*}, Shuitao Gu^{4*}, Minxia Fang⁵, Xiaobing Ren^{6,7}

¹ School of Opto-electronical Engineering, Xi'an Technological University, Xi'an 710032, China;

² School of Engineering Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan;

³ Department of Materials Science and Engineering, Institute of Science Tokyo, Meguro-ku, Tokyo 152-8550, Japan;

⁴ School of Civil Engineering, Chongqing University, Chongqing 400044, China;

⁵ School of Physics, Xi'an Jiaotong University, MOE Key Lab Nonequilibrium Synth & Modulat Condens, Xi'an 710049, China;

⁶ Center for Smart Materials, Yongjiang Laboratory, Ningbo, 315201 China;

⁷ Frontier Institute for Science and Technology, Xi'an Jiaotong University, Xi'an, 714009, China.

Corresponding Authors: zhdai@mail.xjtu.edu.cn; zsemail@126.com; gust@cqu.edu.cn

X-ray photoelectron spectroscopy (XPS) provides robust support for understanding material mechanisms and optimizing preparation processes by detecting information such as the elemental composition and electronic structure of ceramic surfaces.^{1,2} Fig. 1 shows the XPS test results for (1- x)KNN- x BZN ($x=0.1, 0.125, 0.15, 0.175$) ceramics. The full spectrum in Fig. 1(a) confirmed the existence of elements of K, Na, Nb, O, Zn, and Bi. Fig. 1(b) shows the O 1s spectrum of KNN- x BZN ceramics measured by XPS. The O 1s spectrum can be resolved into three binding energy peaks, corresponding respectively to lattice oxygen (O_L , ~529 eV), oxygen vacancies (O_V , ~531 eV), and surface-adsorbed oxygen (O_A , ~532 eV). The relative area of the O_V peak permits semi-quantitative analysis of oxygen vacancy concentration. Fig. 1(b) indicates that the relative area of the O_V peak generally decreases with increasing

doping concentration, suggesting that BZN doping effectively suppresses oxygen vacancy formation. This is typically associated with enhanced microstructural density in ceramics. A low oxygen vacancy concentration favors reduced leakage conductance, thereby enhancing the material's breakdown field strength. However, the oxygen vacancy concentration reaches its maximum proportion at a doping concentration of $x = 0.175$. This may be attributed to excessive doping causing Bi element volatilization and exacerbating the non-equivalent substitution effect of B-site ions, thereby introducing additional charge-compensating oxygen vacancies.

The above content is included in the supporting information for the manuscript.

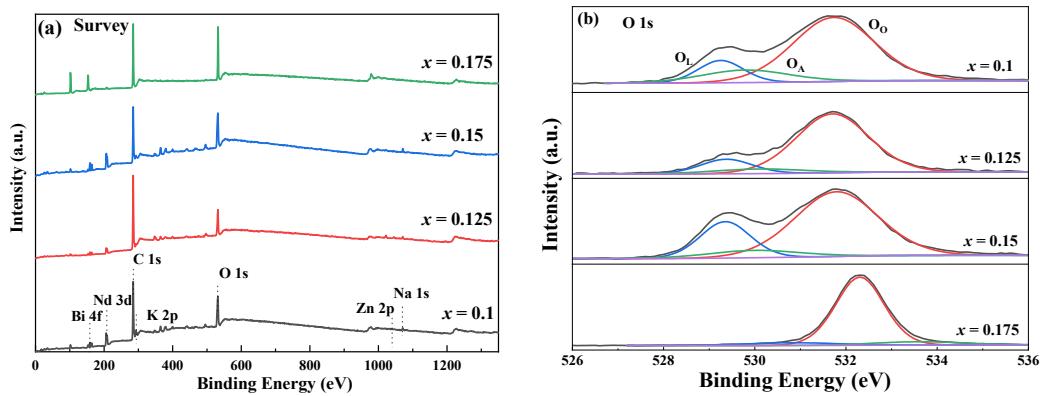


Fig. 1 (a) XPS survey of $(1-x)$ KNN- x BZN ($x=0.1, 0.125, 0.15, 0.175$) ceramics. (b) XPS O 1s spectra of $(1-x)$ KNN- x BZN ($x=0.1, 0.125, 0.15, 0.175$) ceramics.

REFERENCE

- 1 Z. Li, M. Xiao, Q. Cao, C. Guo, M. Yu, D. Peng, Q. Hua, Y. Chen, Y. Lan and Z. Xing, *Small*, 2025, e05568.
- 2 W. Li, M. Xiao, J. Jiang, Y. Li, X. Zhang, S. Li, X. Lin, D. Peng, S. W. Or, S. Sun and Z. Xing, *Nano Energy*, 2025, **142**, 111140.