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1. Experimental method

1.1. Synthesis of Ni-Cu-Co-P on NF

To synthesize the Ni-Cu-Co-P electrocatalyst, a NF substrate underwent a pretreatment process
beginning with immersion in 96% C,HsOH, followed by treatment in 20% HCI. Subsequently, the
substrate was rinsed thoroughly with deionized water and immersed in an electrodeposition bath
formulated with 0.4 M NiSO,4.6H,0, 0.04 M CuS0O,.5H,0, and 0.4 M CoS0O,4.6H,0 as sources of
Ni?*, Cu?', and Co?" ions, respectively. Furthermore, 0.02 M NaH,PO,.H,O was incorporated as
a P precursor, enabling the release of P ions under reductive conditions for the in-situ formation
of metal phosphide phases. To enhance the ionic conductivity and facilitate efficient ion transport
in the electrolyte, 1 M NaCl was added. Additionally, to regulate the pH and maintain an acidic
environment favorable for electrodeposition, 1 M H,SO, was introduced. The deposition
procedure was carried out galvanostatically at room temperature using a direct current (DC) power
supply in a two-electrode cell containing 30 ml of the prepared bath. In this configuration, NF
served as the cathode, while a Pt sheet functioned as the anode. Electrodeposition was performed
under a constant current density of 2 A.cm™. To explore the influence of deposition time on the
structural and electrocatalytic performance, a series of electrodes were fabricated at various
durations (20, 50, 80, 100, and 120 seconds) under identical current conditions. After deposition,
each electrode was rinsed with deionized water and air-dried. For clarity and consistency
throughout the manuscript, a specific coding system was assigned to each sample (e.g., S-20 for
20 s deposition), as summarized in Table S1.

Table S1. Sample Designation and Labeling Scheme

Samples Deposition time (s)
S-20 20
S-50 50
S-80 80
S-100 100
S-120 120

1.2. Material characterization

To investigate the surface morphology of the fabricated electrocatalyst coatings, field-emission
scanning electron microscopy (FESEM; MIRA3, TESCAN) was employed. The elemental
composition of the coatings was analyzed by energy-dispersive X-ray spectroscopy (EDS) using
a VP 1450 system (LEO, Germany). Transmission electron microscopy (TEM) and high-resolution
TEM (HRTEM) analyses were performed using a JEOL JEM-2100 instrument to elucidate the
microstructure at higher spatial resolution. Elemental distribution and compositional information
were further examined by scanning TEM (STEM) coupled with EDS. The phase structure and
crystallographic characteristics of the samples were identified by X-ray diffraction (XRD) using
an X’Pert MPD diffractometer with Cu Ko radiation (A = 1.54178 A), and the diffraction patterns
were analyzed using HighScore Plus software. To evaluate the homogeneity of elemental
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distribution within the synthesized electrocatalyst layers, elemental mapping was conducted on the
optimal electrode. Fourier-transform infrared (FTIR) spectroscopy (AVATAR 370 FT-IR, Thermo
Nicolet, USA) was utilized to gain deeper insight into chemical composition and vibrational modes
associated with surface functional groups. In addition, X-ray photoelectron spectroscopy (XPS;
Thermo Scientific ESCALAB 250Xi) was carried out to probe the surface elemental composition,
chemical states, and phase-related surface features of the prepared samples.

1.3. Electrochemical measurements

All electrochemical tests in this study were conducted using a conventional three-electrode
configuration. A Pt sheet served as the counter electrode, while an Ag/AgCl electrode was used as
the reference. The working electrode consisted of the synthesized electrocatalysts. A 1.0 M KOH
aqueous solution was used as the electrolyte for all measurements. The electrochemical
experiments were performed at room temperature using a ZIVE potentiostat. To ensure
consistency and comparability of results, all measured potentials were converted to the reversible
hydrogen electrode (RHE) scale using Equation 1:

E (vs. ruE) = E (vs. Agiagcny T 0.197 +0.0591 x pH (1

Moreover, to minimize the influence of solution resistance, potential drop (iR) compensation was
applied, with the solution resistance values obtained via electrochemical impedance spectroscopy
(EIS). The electrocatalytic activity of the synthesized electrodes toward the HER and OER was
assessed by linear sweep voltammetry (LSV). For HER analysis, the potential window was set
between —0.5 and 2.0 V vs. Ag/AgCl, while for OER, the range was 0 to +2.0 V vs. Ag/AgCl.
All LSV measurements were carried out at a scan rate of 5 mV.s!. The Tafel slope was derived
from the linear region of the LSV curves to evaluate the kinetics of hydrogen and oxygen
evolution. To quantitatively estimate the electrochemically active surface area (ECSA), cyclic
voltammetry (CV) was performed within the non-faradaic region. The electrodes were immersed
in electrolyte solution until a stable open circuit potential (OCP) was achieved, followed by CV
tests within £50 mV around the OCP. The measurements were conducted at various scan rates: 10,
20, 30, 40, 50, 60, 70, 80, 90, and 100 mV.s™!. For each scan rate, the average absolute values of
anodic and cathodic current densities were calculated and plotted versus the scan rate. The slope
of the resulting linear plot corresponds to the double-layer capacitance (Cq)). The ECSA was then
calculated using a standard specific capacitance value. EIS was employed to further investigate
the electrocatalytic behavior of the synthesized electrodes. Separate EIS measurements were
conducted for HER and OER. For HER, impedance spectra were recorded in the frequency range
of 100 kHz to 100 mHz at three different potentials: —1200, —1300, and —1400 mV vs. Ag/AgClI.
Similarly, for OER, the measurements were carried out within the same frequency range at +600,
+700, and +800 mV vs. Ag/AgCl. The impedance data was analyzed using Nyquist plots generated
with ZMAN software, and key electrochemical parameters were extracted. To evaluate the long-
term operational durability of the synthesized electrocatalysts under practical conditions,
chronopotentiometry stability tests were conducted in alkaline media. For HER performance, the
electrodes were tested at a constant current density of —100 mA c¢cm™ for 100 hours, and the
variation in potential over time was monitored. A similar test was performed for OER at a constant
current density of +100 mA c¢cm for 100 hours under the same electrolyte conditions. To study the
superhydrophobic behavior of the electrode surfaces, dynamic surface resistance measurements, a
subset of EIS analysis, were conducted. This test was performed for 600 seconds at a frequency of
1 Hz and a constant current density of —30 mA.cm. Both the Ni-Cu-Co-P@NF electrode and a Pt
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sheet were included as comparative samples. Wettability characteristics were further assessed
through static water contact angle measurements using a contact angle goniometer (SCAM-S1,
MehrTavNegar Alborz, Iran). The contact angle of a water droplet on the electrode surface was
measured to determine its hydrophilic or hydrophobic nature. Furthermore, to evaluate the
electrode surface's ability to release gas bubbles which plays a key role in enhancing water splitting
(WS) efficiency and reducing bubble-induced resistance, the detachment behavior of bubbles was
recorded using an optical camera (Dino-Lite AM132) for 20 seconds at a constant current density
of =30 mA cm™. Finally, to verify the practical applicability of the synthesized electrocatalysts in
an overall WS system, a two-electrode cell was assembled. The optimized HER electrode served
as the cathode, and the optimized OER electrode functioned as the anode. The cell voltage was
gradually increased, and the resulting current density was recorded. A plot of current density
versus applied voltage was then generated, allowing for precise assessment of the overall WS
performance of the combined electrodes.
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Fig. S1. FESEM images of the electrodeposited Ni-Cu-Co-P electrodes at different deposition times: a) S-
20, b) S-50, ¢) S-80, d) S-100, and e) S-120.
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Fig. S2. EDS analysis of a) S-20, b) S-50, ¢) S-80, d) S-100, and ¢) S-120.
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Fig. S3. Bar chart illustrating the EDS analysis results of the synthesized electrodes in this study.
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Fig. S4. a) XRD patterns of the Ni-Cu-Co-P electrode, and b) FTIR spectra of the Ni-Cu-Co-P sample.



Table S2. Comparative evaluation of the HER electrocatalytic performance of phosphide-based
electrocatalysts in 1.0 M KOH solution.

Electrocatalyst I}1o (mV) b (mV.dec!) Reference

Ni-Cu-Co-P@NF 81 69 This work
CoP/Co,P@NC 198 82 [1]
Ni,P@G 275 56.5 [2]
CoP-Co,P 109 78.9 [3]
CoP (MoP)-CoMoO;@CN 198 95 [4]
Ni3S,/Cu—NiCo LDH 156 84 [5]
CuCoP@Cu foil 231 86 [6]
NiCoFeP/C 149 89 [7]
CoNiP microspheres 148.5 52 [8]
CoP nanoframes 136 54.8 [9]
CoP/NiCoP 110 87.3 [10]
NC-NiFeO,@NiFe-P 285 65 [11]
NiCoCu-P cage 210 72.5 [12]
NiSe,—Ni,P/NF 102 88 [13]
NiCo LDH/NiCoP/ Ni Foam 112 75.6 [14]




S I P S S S Sy S R I g RS GRS R iy M S G R e e i S i S . e S RS i et e e
1 45 - -  rottketotelkotoktlnlel g 3 - - T 5 piaialatatalatetelalolatlalalel o |
@ S20@-12400mV i @ S50@-1200mV > i 9 S-100 @ -1200 mV * |
I 40 4+—— Fitted i ! 64— Fitted ! | 7 {—— Fitted ’ ! l
35] @ S20@-1300mvV; ! @ S50 @ -1300 mV'! ] @ S-100 @ -1300 mV'! !
| —— Fitted E i < |— Fitted N ! 61— Fitted L 11
| oW §-20 @ -1400 mV'! o ! ~ | @ s50@-1400mV! ] o] @ sw@womy 1
£ [—Fittea __.--71" 1 E 4 |— Fitted S P ! =} Fitted 5 !
I : 25 - .- : 1 ) e "“\ ] o o 11
- : T 7 1 =3 - i 3 G 4 E |
1 & 83 |
| ' ' |
I Z' (S2.cm?) 1
i o S-80 1400 m¥ vs, AgiAgel @ NF @ 580
| —— Fitted i H —— Fitied 1 Fitted  —— Fitted |
i H 4 i
I 8] @ 8120 1300 m\': ! @ S-100 1@ s-20 @ S-100 I
—— Fitted i i — Fitted ! ——Fitted  — Fitted
1 -~ ™ o S-120@-1400 mV' ! ' @ S120 19 830 e 5120 1
"'E 6 Fitted 3 ' e H — Ficted — Fitted — Vitted
1 S 3 2 ! |
- 1
I =3 : H o I
N
| |
I 00— T T T T 1
60 00777 05 1.0 15 2.0 25 3.0
| Z' (Q.cm?) 7'-R, (f2.cm?) 7Z'-R, (Q.em?) I
e Em Em Em Em Em Em Em Em EE EE Em Em Em Em EE Em Em EE Em Em Em Em Em Em Em Em Em Em Em mm Em e Em Em e

Fig. SS5. Nyquist plots of a) S-20, b) S-50, ¢) S-100, and d) S-120 recorded at various overpotentials, and
Nyquist plot of Ni-Cu-Co-P@NF electrode deposited at an overpotential of ) -1200 mV, and f) -1400 mV.

Fig. S6. A suitable EEC model enabling accurate simulation of the system's electrochemical response.



Table S3. Fitted EIS parameters for NF and the synthesized electrodes in this study.

Electrode 1] (mV) R; (Q.cm™?) R (Q.cm?) CPE (Fs™'.cm™?) n

-1200 1.396 52.249 0.00060 0.902

NF -1300 1.501 5.553 0.00032 0.956
-1400 1.611 1.795 0.00026 0.982

-1200 1.702 39.849 0.00461 0.928

S-20 -1300 1.712 2.859 0.00242 0.929
-1400 1.724 0.808 0.00168 0.941

-1200 1.616 5.628 0.01040 0.960

S-50 -1300 1.634 0.857 0.00714 0.957
-1400 1.643 0.377 0.00531 0.974

-1200 1.593 3.330 0.01683 0.961

S-80 -1300 1.582 0.684 0.01211 0.958
-1400 1.581 0.334 0.00875 0.975

-1200 1.541 6.771 0.01356 0.966

S-100 -1300 1.518 0.845 0.00974 0.953
-1400 1.523 0.348 0.00695 0.971

-1200 1.478 8.932 0.00938 0.936

S-120 -1300 1.475 1.034 0.00580 0.955
-1400 1.484 0.399 0.00372 0.993
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Fig. S7. Elemental mapping analysis of S-80 after stability test.
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Fig. S8. EDS analysis of S-80 after stability test.
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Fig. S10. a) ECSA-normalized current densities curves, b) LSV curves of control electrodes, confirming
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Table S4. Comparative evaluation of the OER electrocatalytic performance of phosphide-based
electrocatalysts in 1.0 M KOH solution.

Electrocatalyst I}1o (mV) b (mV.dec!) Reference

Ni-Cu-Co-P@NF 248 64 This work
Co,P/N-doped C 380 68.1 [15]
CoP-Co,P@PC/PG 272 66 [16]
NiCo,P@NiCo- LDH 269 97 [17]
CoNiP,@FeCoP,/C@CoNiPy 298 74.5 [18]
NisP4@NiOOH 273 62 [19]
Cu3P-Co,P 334 132 [20]
C-CoP 323 71.1 [21]
NiCoP@Cu;P 309 42 [22]
CoP nanoframes 323 49.6 [9]
Ru-Ni-Co-P/NC 318 84 [23]
CuP,/Ni; Cu,—P@g-C3Ny 280 66 [24]
NisgCuygPg 307 42.5 [25]
CoP/NiCoP 310.7 104.5 [10]
Co-Ni-P 277 63.6 [26]
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Table SS. Fitted EIS parameters for NF and the synthesized electrodes in this study.

Electrode 1] (mV) R, (Q.cm™) R (Q.cm™2) CPE (Fs™1l.cm?) n

600 1.744 5.269 0.00725 0.766

NF 700 1.805 1.998 0.00466 0.813
800 1.845 0.915 0.00399 0.820

600 1.885 1.359 0.11013 0.858

S-20 700 1.928 0.649 0.08591 0.864
800 1.912 0.392 0.06838 0.870

600 1.489 0.706 0.33319 0.890

S-50 700 1.488 0.362 0.37386 0.819
800 1.484 0.269 0.39711 0.790

600 1.475 0.520 0.78290 0.837

S-80 700 1.479 0.282 0.82615 0.794
800 1.476 0.214 0.98138 0.702

600 1.624 0.698 0.55220 0.817

S-100 700 1.630 0.349 0.55486 0.836
800 1.616 0.268 0.65993 0.746

600 1.717 0.954 0.12818 0.897

S-120 700 1.744 0.456 0.12288 0.879
800 1.712 0.277 0.11697 0.885
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Table S6. Comparison of cell voltage at 10 mA.cm for this work with previously reported
electrocatalysts in 1.0 M KOH solution.

Electrocatalyst )10 (mV) Reference

Ni-Cu-Co-P@NF 1.56 This work
Ni,P@NC 1.67 [27]
Co/CoP 1.68 [28]
Ni-Co-P hollow nanobricks 1.62 [29]
CoP@a-CoOy 1.66 [30]
NiCo,Px/CNT 1.61 [31]
Co,P/N-doped C 1.71 [15]
Ni,P-NPCM 1.62 [32]
NiCoFeP/C 1.60 [7]
Co-P@PC 1.60 [33]
Cu-CoP NAs/CP 1.72 [34]
Ni—Co-P/GS 1.58 [35]
Co-Ni-P 1.64 [26]
CoP-Co,P 1.60 [3]
RhP,/CoNiP4O, 1.57 [36]
A-NiCoP 1.64 [37]
MnO,/NiCoP/NF 1.59 [38]
CoP/NiCoP 1.63 [10]
NiCoP/FeNiCoP 1.58 [39]
Co304/P-C@NiFeP 1.67 [40]
Nij;Co,Fe-P 1.61 [41]
CeCoFeP@MXene 1.63 [42]
Co,P/MnP@C—-CNFs 1.58 [43]
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