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Complement to Computational Detail
The sulfur reduction reaction (SRR) in the discharging process is expressed as
follows,

Sg+16Li" (Na")+16e” = 8Li,S Na,S

¢ 27)
The elementary step involved in the generation of one Li,S molecule is as follows,
*Sg+2Li (Na™)+2e” = *Li,Se(* Na,Sy)
*Li,Se (* Na,Sg) = *Li,S. (* Na,Sq) +1/4 S¢
*Li,S. (* Na,Sg) = *Li,S, (* Na,S,) + 1/4 S,
*Li,S, (* Na,S,) = *Li,S, (* Na,S,) +1/4 S,
*Li,S, (* Na,S,) = *Li,S(*Na,S)+1/8 S

wherein * is the active site on the substrate.
The reaction Gibbs free energy of each step is calculated with the following equation:
AG = AE + AEzpg— TAS (S1)
where AE represents the adsorption energy, AEzpg and TAS denote the zero-point
energy difference and entropy difference between the products and reactants obtained

from the frequency calculations at 298.15 K.

Table S1. Calculated lattice parameters of C,4 monolayers and bilayers in both phases,
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cohesive energies per atom (E.), and additional cohesive energy for monolayer

formation from molecules (AE.) of both C,4 phases, and binding energy (E}) of bilayer

C,4 in both phases.
a(A) b(A) | Egp(eV) E. AE, E,
(eV/atom)® | (eV/atom® | (meV/atom)
qHP C,4 monolayer | 11.532 6.198 3.04 —9.434 —0.391
(11.500)¢ | (6.180)¢ 3.10 (—8.974)¢ | (—0.388)4
qTP C,4 monolayer | 6.123 6.123 3.75 —9.371 —0.328
(6.103)4 | (6.103)¢ 3.74 (—8.914)¢ | (—0.328)4
qHP C,4 bilayer 11.526 6.198 3.00 —15.64
qTP C,4 bilayer 6.122 6.121 3.55 —15.61

aThe E, values were calculated with the following equation: E, = E (monolayer)/n — E

(atom), where E (monolayer) is the energy of the monolayer per unit cell, n is the

number of C atoms in the unit cell, and £ (atom) is the energy of an isolated C atom.

bThe AE,. values were calculated with the following equation: AE, = [E (monolayer) —

mE (Cy4)]/n, where E (monolayer) is the energy of the monolayer per unit cell, m and

n are the number of Cy4 clusters and C atoms in the unit cell, and £ (C,4) is the energy

of an isolated C,4 cluster.

‘The E, values were calculated with the following equation: E, = [E (bilayer) — 2F

(monolayer)]/n, where E (bilayer) and £ (monolayer) are the energy of the bilayer and

monolayer per unit cell, respectively, n is the number of C atoms in the monolayer unit

cell.

4The values reported in previous work! are shown in parentheses for comparison.
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Figure S1. Top view of the HOCO and LUCO isosurfaces (isovalue = 0.008) for
monolayer networks, qHP (a), qTP (c). Top view of the ELF isosurfaces (isovalue =

0.8) for monolayer networks, qHP (b), qTP (d). The C atoms are represented by gray

spheres.
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Figure S2. Phonon dispersion curves of qHP (a) and qTP (b) C,4 monolayers.
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Figure S3. Fluctuation of potential energy at 373.15 K for qHP (a) and qTP (b) Cy4
monolayers. The snapshots at 0 ps and 10 ps are inserted. The C atoms are represented

by gray spheres.
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Figure S4. Color-filled independent gradient model (IGM) isosurface (isovalue =
0.002) (left) and scatter plots (right) depicting average noncovalent interaction regions
for qHP (a) and qTP (b) C,4 bilayers. In the IGM, the blue patches represent attractive
interactions, green patches indicate van der Waals forces, and red patches depict

repulsive interactions. The C atoms are represented by gray spheres.
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Figure S5. Phonon dispersion curves of qHP (a) and qTP (b) C,4 bilayers.
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Figure S6. Fluctuation of potential energy at 373.15 K for qHP (a) and qTP (b) Cy,
bilayers. The snapshots at 0 ps and 10 ps are inserted. Fluctuation of interlayer heights

for qHP (c) and qTP (d) Cy4 bilayers. The C atoms are represented by gray spheres.
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Figure S7. Relaxed configurations of qTP C,4 monolayers with adsorptions of Sg (a),
Li,Sg (b), LiSe (c), Li,S4 (d), Li,S, (e), and Li,S (f). The C, S, and Li atoms are

represented by gray, yellow, and green spheres, respectively.

Figure S8. Relaxed configurations of qTP C,4 bilayers with adsorptions of Sg (a), Li,Sg
(b), Li,S¢ (¢), Li,S4 (d), Li,S; (e), and Li,S (f). The C, S, and Li atoms are represented

by gray, yellow, and green spheres, respectively.

S9



6 4 il \ -
Z S ]
~ 5 b \ ———— e -

Z
'S —— gHP C,, bilayer
§4 | — — qTPC,, bilayer i
Rt
@
)
E E
53 ]
=
[
5 -

Sy LiS; Li,S, Li,S, Li,S, LiS
Figure S9. Interlayer spacing of qHP and qTP C,4 bilayers with adsorptions of Sg and

Li,S, clusters.
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Figure S10. Plane averaged charge density differences (CDD) of the qTP C,4 monolayer
with adsorptions of Sg (a), Li,Sg (b), Li,S¢ (c), Li,S4 (d), LixS; (), LixS (), positive
values represent electron accumulation, and negative values indicate electron depletion.
The CDD isosurfaces (isosurface = 0.005 a.u.) are also illustrated in the background of
the figure, the cyan and yellow regions of the charge density difference represent charge
loss and charge aggregation, respectively. The C, S, and Li atoms are represented by

gray, yellow, and green spheres, respectively.
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Figure S11. Plane averaged charge density differences (CDD) of the qTP C,4 bilayer
with adsorptions of Sg (a), Li,Sg (b), Li,S¢ (c), Li,S4 (d), LixS; (e), LixS (), positive
values represent electron accumulation, and negative values indicate electron depletion.
The CDD isosurfaces (isosurface = 0.005 a.u.) are also illustrated in the background of
the figure, the cyan and yellow regions of the charge density difference represent charge
loss and charge aggregation, respectively. The C, S, and Li atoms are represented by

gray, yellow, and green spheres, respectively.
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Figure S12. Charge transfers (AQ) from adsorbates (Sg and LiPSs) to the Cy
monolayers and bilayers. Positive AQ values indicate that electrons are transferred from

adsorbates to substrates.
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Figure S13. COOP plots of the qTP C,4 monolayer and bilayer with adsorptions of Sg

(a), LiySg (b), Li,S¢ (c), LixS4 (d), LisS, (e), LixS (f), positive and negative values

represent bonding and antibonding interactions between two fragments.
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Table S2. Collected AG values associated with rate-limiting step for 2D monolayers

reported previously.

Substrates AGax (eV)
N-doped graphene? 1.21
C,oN3 0.89

Metal-decorated g-C3Ny* 0.49-1.37

MoS,’ 0.77
In,Se;° 0.77
V,NF,’ 2.14
Fe;GeTe,® 0.41
1T-MoTe,’ 0.97

(Sc, Ti, and V)-doped BP  0.61-0.88
monolayers!”
MA,Z, monolayers'! 0.48-0.73

Ceo monolayers!'? 0.51-0.95
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Figure S14. Projected density of states (PDOS) of qTP C,4 monolayer with adsorptions

of Sg (a), Li,Sg (b), Li,S¢ (¢), Li,S4 (d), LisS; (e), LipS (f). The Fermi level is indicated

with a dashed line.
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Figure S15. Projected density of states (PDOS) of qTP C,4 bilayer with adsorptions of

Sg(a), Li,Sg (b), Li,S¢ (c), Li,S4(d), Li,S; (e), Li,S (f). The Fermi level is indicated with

a dashed line.
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