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Supporting Information

Flexible interfacial modification layer towards enhanced performance in LATP-

based all-solid-state batteries
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Figure S1. The Li" migration pathway in PEO system for the DFT calculation.

Figure S2. The Li" migration pathway in PEO_LZP system for the DFT calculation.



Figure S3. (a)-(b) The cross-section SEM image of the different PEO_LZP modified
LATP pellets. (c) The cross-section SEM image of the PEO modified LATP pellet and

corresponding EDS mapping.
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Figure S4. The plating/striping profile of the Li/LATP/Li symmetric cell at a current
density of 0.20 mA cm.
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Figure S5. The Nyquist plot of the Li/LATP/Li symmetric cell before and after cycling.
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Figure S6. The impedance changes of the (a) PEO modified LATP and (b) PEO_LZP

modified LATP during cycling at 0.20 mA cm™.
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Figure S7. The CV curve of the Li/PEO_LZP LATP/LFP full cell.
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Figure S8. The charge/discharge profiles of the full cells assembled with the (a) PEO
modified and (b) PEO_LZP modified LATP pellet at different rate.
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Figure S9. The coulombic efficiency of the full cells at 0.5 C.
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Figure S10. The CCD results of the PEO_LZP modified LATP with different LZP

content when the addition of the modification solution was 30 pL.
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Figure S11. The CCD results of the PEO modified LATP with different addition of

modification solution.



Table S1. Summary of various LATP/LAGP based high-performance electrolytes for

all-Solid-State Lithium Batteries

No.

Electrolyte

Modification

layer

Symmetric cell

Current
density/Cycle

number

Full cell

With liquid electrolyte/C

rate/Cycle number/Capacity

retention

mechanism

Ref.

LATP

LAGP

LATP

LATP

LATP

LAGP

LATP

LAGP

PEO/PAN

Graphite/PEO

PVDF-HFP

PEO

PEO

MOF/PEO

BN/PEO

GPE

0.2 1000

0.1 1000

0.16 400

0.10 200

0.05 400

0.15 400

0.3 500

0.5 400

N 0.05

120

100

300

100

45

60

500

300

89

97.2

933

79.7

99.9

93.4

Antioxidative PAN and
PEO that inhibits

reduction reaction

Graphite can serve as
redox reaction sites and
second current collector

and PEO that inhibits

reduction reaction

Endowing the interface

with improved contact,

favorable Li* diffusion
and inhibiting interfacial

reactions

As a interfacial adhesive

with perfect compatibility

Avoiding side reactions
and ensuring intimate
contact with high

viscosity

Preventing the redox
reaction, providing
intimate contact and Li*

transport pathways

Facilitating ion transport
and reducing interfacial

impedance

Improving the
compatibility and charge
transfer kinetics at the
interface, avoiding the
danger of thermal

runaway

LATP

Sl’l02
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200

90.17
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LATP
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LiPON/Li

Al

AVLiF
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TrFE-CTFE

C3N4

ZnF 2

Al/PEO

BN/CMC

0.1

0.1

0.1

0.2

0.3

0.1
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1200

0.1

0.5

0.5
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0.5
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40
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88.2

83.2

78.6

82.8

88.9

92.0

contact and in-situ
forming SEI that regulates
uniform lithium

deposition

Providing good contact
and chemical stability that
blocks the reduction of

Ge4+

Inducing the uniform
distribution of electric
field and accelerating the

diffusion of Li atoms

Promoting the interfacial
stability by the increased
barrier width and
homogenized electric

field

Reducing the interfacial
impendence and inducing

the uniform Li deposition

Inhibiting side reactions
and guiding uniform Li

deposition

Inhibiting side reactions
and dendrite Li, enabling
the uniform Li* flux

distribution

Homogenizing the electric
field distribution and
interphases growth,
protecting LATP from

electron attack

Reducing interfacial
resistance, motivating Li*
migration and improving

interfacial compatibility
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Li* flow
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