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Figure S1. Synthetic pathway of sodium 6-bromohexanesulfonate (Br-6-SO3Na).
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Figure S2. Membrane electrode assembly (MEA) preparation for single-cell performance.
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Figure S3. 1H-NMR spectra of sodium 6-bromohexanesulfonate (Br-6-SO3Na).
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Figure S4. Visual appearance of Nafion 212 and SPBPH-TFP-70 membranes after 1 h, 15 h, 

and 30 h exposure to Fenton’s reagent (3 wt.% H2O2, 4 ppm Fe2+) at 80 oC.
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Figure S5. Comparison of proton exchange membrane water electrolysis (PEMWE) current 

densities at 1.9 V versus ion exchange capacity (IEC), with reported recent studies.
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Figure S6. Nyquist plot of PEMWE cells using SPBPH-TFP-70 and Nafion 212 membranes 

under 1 A cm-2 at 30 oC.
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Figure S7. Long-term stability test of the SPBPH-TFP-70 cells using Pt-C/Pt-C and IrO2/Pt-C 

as the anode/cathode catalyst materials, respectively, under 1 A cm-2 at 60 oC for 500 h of 

proton exchange membrane water electrolysis (PEMWE) operation.
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Table S1. Root-mean-square (RMS) surface roughness of SPBPH-TFP-x (x = 60, 70, 80, 90).

PEM
Mean height

(nm)

RMS roughness

(Rq, nm)

Average roughness

(Ra, nm)

SPBPH-TFP-60 8.13 7.32 5.12

SPBPH-TFP-70 7.68 5.47 4.25

SPBPH-TFP-80 7.12 4.89 3.78

SPBPH-TFP-90 6.75 4.15 3.21



S10

Table S2. IEC, WU, and λ of the SPBPH-TFP-x (x = 60, 70, 80, 90) PEMs.

PEM
IEC

(meg g-1)

WU

(%)
λ

SPBPH-TFP-60 1.57 20.63 7.30

SPBPH-TFP-70 1.75 25.36 8.05

SPBPH-TFP-80 1.96 30.71 8.71

SPBPH-TFP-90 2.17 37.19 9.53

The hydration number (λ) was calculated from the following formula:

𝜆 =
𝑊𝑈 (%) × 10

𝐼𝐸𝐶 × 18

(S-1)
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Table S3. Mechanical properties of the SPBPH-TFP-x (x = 60, 70, 80, 90) at the dry state.

PEM
Tensile strength

(MPa)

Elongation at 

break

(%)

Young’s modulus

(GPa)

SPBPH-TFP-60 87.6 ± 1.0 10.5 ± 0.3 2.0 ± 0.0045

SPBPH-TFP-70 83.5 ± 0.2 13.5 ± 0.4 1.3 ± 0.0033

SPBPH-TFP-80 75.1 ± 0.6 16.5 ± 0.7 1.0 ± 0.0025

SPBPH-TFP-90 65.0 ± 0.3 21.0 ± 0.5 0.7 ± 0.0021
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Table S4. Mechanical properties of the SPBPH-TFP-x (x = 60, 70, 80, 90) at the wet state.

PEM
Tensile strength

(MPa)

Elongation at 

break

(%)

Young’s modulus

(GPa)

SPBPH-TFP-60 34.6 ± 0.1 21.7 ± 0.1 1.5 ± 0.0096

SPBPH-TFP-70 26.2 ± 0.1 27.1 ± 0.2 1.1 ± 0.0012

SPBPH-TFP-80 26.3 ± 0.2 30.8 ± 0.3 0.8 ± 0.0011

SPBPH-TFP-90 22.5 ± 0.1 41.9 ± 0.2 0.5 ± 0.0015
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Table S5. Comparison of PEMWE performance with reported values.

Current density

(mA cm-2)
PEM

IEC

(meg g-1)

Anode/ 

cathode 

catalyst

Catalyst 

loading

(mg cm-2)

Temperature

(oC)
1.6 V 1.8 V 1.9 V

Ref.

SPBPH-

TFP-70
1.93 Pt-C/Pt-C 1.0/0.4 90 1750 3920 5170

This 

work

SPAES 1.89 IrO2/Pt-C 2.0/0.4 90 1070 2210 2700 [1]

BPSH50 1.86 IrO2/Pt-C 2.0/0.4 80 1410 3890 5320 [2]

BPSH60 2.04 IrO2/Pt-C 2.0/0.4 80 1460 4210 5656 [2]

Nafion 212 0.91 IrO2/Pt-C 2.0/0.4 90 540 1660 2840 [3]

DSQFBP-

BPS 10k-5k
2.00 IrO2/Pt-C 1.0/0.4 90 750 2320 3420 [3]

DSQFBP-

BPS 10k-10k
1.55 IrO2/Pt-C 1.0/0.4 90 680 1950 2800 [3]

G-sPSS-1.47 1.47 IrO2/Pt-C 2.0/0.4 90 1140 3050 3990 [4]

G-sPSS-1.95 1.95 IrO2/Pt-C 2.0/0.4 90 2480 5060 6000 [4]

sPPS 2.78 IrO2/Pt-C 1.5/0.5 80 890 3480 5000 [5]

Nafion 115 - IrO2/Pt-C 1.5/0.5 80 0.5 1.5 2.0 [5]

Nafion-

CNT@SiO2
1.01 IrO2/Pt-C 1.0/0.4 80 1 2560 3.188 [6]

Reinforced 

R98-05S
- IrRuOx/Pt-C 0.37/0.1 90 2.0 5000 6.6 [7]

Nafion 117 0.93 IrO2/Pt-C 2.0/0.4 80 0.53 1.167 3.20 [8]

Nafion 115 - Ir/Pt-C 0.14/0.4 80 0.875 2.0 2.2 [9]

Nafion 117 - Ir black/Pt-C 2.0/2.0 75 0.5 1.083 1.375 [10]

Nafion 212 - Ir/Pt 2.0/1.0 80 0.875 2.75 3.813 [11]

Aquivion - IrO2/Pt-C 2.0/0.3 90 1.1 3.2 3.6 [12]

Aquivion 

E87-12S
- IrO2/Pt 2.0/2.0 60 0.688 2.375 3.375 [13]

PFSA/ssPS 1.05

IrOx-

ATO/Pt-

carbon 

nanofiber

1.0/0.4 80 0.25 1.125 1.625 [14]
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