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Figure S1. Synthetic pathway of sodium 6-bromohexanesulfonate (Br-6-SO;Na).
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Figure S2. Membrane electrode assembly (MEA) preparation for single-cell performance.
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Figure S3. 'H-NMR spectra of sodium 6-bromohexanesulfonate (Br-6-SO;Na).
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Nafion 212

Figure S4. Visual appearance of Nafion 212 and SPBPH-TFP-70 membranes after 1 h, 15 h,

and 30 h exposure to Fenton’s reagent (3 wt.% H,0,, 4 ppm Fe?") at 80 °C.
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Figure S5. Comparison of proton exchange membrane water electrolysis (PEMWE) current

densities at 1.9 V versus ion exchange capacity (IEC), with reported recent studies.
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Figure S6. Nyquist plot of PEMWE cells using SPBPH-TFP-70 and Nafion 212 membranes
under 1 A cm at 30 °C.
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Figure S7. Long-term stability test of the SPBPH-TFP-70 cells using Pt-C/Pt-C and IrO,/Pt-C
as the anode/cathode catalyst materials, respectively, under 1 A cm? at 60 °C for 500 h of

proton exchange membrane water electrolysis (PEMWE) operation.
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Table S1. Root-mean-square (RMS) surface roughness of SPBPH-TFP-x (x = 60, 70, 80, 90).

PEM Mean height RMS roughness Average roughness
(nm) (Rg, nm) (R,, nm)
SPBPH-TFP-60 8.13 7.32 5.12
SPBPH-TFP-70 7.68 5.47 4.25
SPBPH-TFP-80 7.12 4.89 3.78
SPBPH-TFP-90 6.75 4.15 3.21
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Table S2. IEC, WU, and A of the SPBPH-TFP-x (x = 60, 70, 80, 90) PEMs.

IEC WU
PEM A
(meg g™') (%)
SPBPH-TFP-60 1.57 20.63 7.30
SPBPH-TFP-70 1.75 25.36 8.05
SPBPH-TFP-80 1.96 30.71 8.71
SPBPH-TFP-90 2.17 37.19 9.53

The hydration number (1) was calculated from the following formula:

_ WU (%) x 10
~ JECx 18
(S-1)
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Table S3. Mechanical properties of the SPBPH-TFP-x (x = 60, 70, 80, 90) at the dry state.

Elongation at

Tensile strength Young’s modulus
PEM (MPa) break (GPa)
a a
(“o)

SPBPH-TFP-60 87.6+1.0 10.5+0.3 2.0+ 0.0045
SPBPH-TFP-70 83.5+0.2 13.5+04 1.3 +0.0033
SPBPH-TFP-80 75.1£0.6 16.5+0.7 1.0 £0.0025
SPBPH-TFP-90 65.0+0.3 21.0+£0.5 0.7 £0.0021
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Table S4. Mechanical properties of the SPBPH-TFP-x (x = 60, 70, 80, 90) at the wet state.

Elongation at

Tensile strength Young’s modulus
PEM (MPa) break (GPa)
a a
(“o)

SPBPH-TFP-60 346 +0.1 21.7+0.1 1.5+ 0.0096
SPBPH-TFP-70 26.2 £0.1 27.1+0.2 1.1 £0.0012
SPBPH-TFP-80 26.3+£0.2 30.8+0.3 0.8+0.0011
SPBPH-TFP-90 22.5+0.1 41.9+0.2 0.5+0.0015
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Table S5. Comparison of PEMWE performance with reported values.

Current density
Anode/ Catalyst

IEC Temperature (mA em?)
PEM cathode loading Ref.
(meg g™) ) (°0)
catalyst (mg cm™?) 1.6V 18V 19V
SPBPH- This
1.93 Pt-C/Pt-C 1.0/0.4 90 1750 3920 5170
TFP-70 work
SPAES 1.89 1rO,/Pt-C 2.0/0.4 90 1070 2210 2700 [1]
BPSHS50 1.86 IrO,/Pt-C 2.0/0.4 80 1410 3890 5320 [2]
BPSH60 2.04 IrO,/Pt-C 2.0/0.4 80 1460 4210 5656 [2]
Nafion 212 0.91 1rO,/Pt-C 2.0/0.4 90 540 1660 2840 [3]
DSQFBP-
2.00 1rO,/Pt-C 1.0/0.4 90 750 2320 3420 [3]
BPS 10k-5k
DSQFBP-
1.55 1rO,/Pt-C 1.0/0.4 90 680 1950 2800 [3]
BPS 10k-10k
G-sPSS-1.47 1.47 1rO,/Pt-C 2.0/0.4 90 1140 3050 3990 [4]
G-sPSS-1.95 1.95 1rO,/Pt-C 2.0/0.4 90 2480 5060 6000 [4]
sPPS 2.78 1rO,/Pt-C 1.5/0.5 80 890 3480 5000 [5]
Nafion 115 - IrO,/Pt-C 1.5/0.5 80 0.5 1.5 2.0 [5]
Nafion-
) 1.01 IrO,/Pt-C 1.0/0.4 80 1 2560 3.188 [6]
CNT@Si0,
Reinforced
- IrRuO,/Pt-C 0.37/0.1 90 2.0 5000 6.6 [7]
R98-05S
Nafion 117 0.93 1rO,/Pt-C 2.0/0.4 80 0.53 1.167 3.20 [8]
Nafion 115 - Ir/Pt-C 0.14/0.4 80 0.875 2.0 2.2 [9]
Nafion 117 - Ir black/Pt-C 2.0/2.0 75 0.5 1.083 1.375 [10]
Nafion 212 - Ir/Pt 2.0/1.0 80 0.875 2.75 3813 [11]
Aquivion - 1rO,/Pt-C 2.0/0.3 90 1.1 32 3.6 [12]
Aquivion
- IrO,/Pt 2.0/2.0 60 0.688 2.375 3.375 [13]
E87-12S
IrO,.
ATO/Pt-
PFSA/ssPS 1.05 1.0/0.4 80 0.25 1.125  1.625 [14]
carbon
nanofiber
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