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Density-functional theory (DFT) calculations: The electronic-structure, local-lattice distortion, and 

hydrogen diffusion analysis was done employing first-principles DFT as implemented in the Vienna Ab-

initio Simulation Package (VASP) [S1,S2]. The generalized gradient approximation of Perdew, Burke, and 

Ernzerhof (PBE) was employed in all calculations [S3] with a plane-wave cut-off energy of 520 eV. The 

choice of PBE over LDA or meta-GGA [S4,S5] functionals is based on the work of Söderling et al. [S6] and 

Giese et al. [S7] that establishes the effectiveness of GGA functionals. Large Supercell Random 

Approximates (SCRAPs), i.e., 60 atoms per cell, with the optimized disorder (zero-correlation) were 

generated (a single, optimized configurational representation) for DFT calculations [S8]. The energy and 

force convergence criterion of 10-8 eV and 10-6 eV/Å, respectively, were used for full (volume and atomic) 

relaxation of SCRAPs. The Monkhorst-Pack k-mesh was used for Brillouin zone integration during 

structural optimization and charge self-consistency calculations [S9]. 

Feature engineering: The experimental dataset selected in this study includes only the thermodynamic 

features like pressure, temperature, reaction enthalpy alongside atomic compositions. To handle the 

scarcity of features, we added different statistical-based atomic and electronic features like Pauling 

electronegativity ( ), Mulliken electronegativity ( ), covalent, atomic radii, atomic volume, 𝜘𝑝𝑎𝑢𝑙𝑖𝑛𝑔 𝜘𝑚𝑢𝑙𝑙𝑖𝑘𝑒𝑛

weight, density, and local-lattice distortion or atomic-mismatch. We approached our model development 

including extended feature list to achieve higher accuracy without bias and overdependence on specific 

features. The mean, variance, minimum and maximum values of each of those atomic, electronic and 

material features was added, and model was trained using only these feature sets. The mean and variance 

were both weighted according to the proportion of the element within each alloy structures. 

Mathematically, the mean (µ), variance ( ), minimum (min), and maximum (max) values of a feature X = 𝜎2

{x1, x2,….,xn} are calculated as, ;  ; ; and 
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Additionally, atomic packing fraction (APF), a measure of how densely the atoms is closely packed 

in each structure, is added as a feature which is calculated by the fraction of volume in a crystal structure 

that is occupied by the constituent atoms. APF can be a critical feature in hydrogen storage for alloys, as 

it is strongly correlated with the availability of interstitial sites where hydrogen atoms can reside within 



lattice structures. The APF is calculated by, , where  is the density of the material, 

𝐴𝑃𝐹 =

4
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ri, ci, and Mi are the atomic radii, compositional fraction, and molar mass of i-th element respectively, and 

Na is Avogadro’s number. By addition of all these atomic, electronic, and structural features; calculated 

from elemental properties using the alloy compositions of the dataset; we finally reached a total of 44 

features for each composition (see Metho section in the main text). This statistical approach helps in 

reducing bias and prevents over-reliance on all thermodynamic features, thus improving the model’s 

accuracy without overfitting, which is the primary objective of this work. 

Table S1: Features used in machine learning.

Feature Name Models Used In Notes Dimensions

Temperature H/M, Reaction Enthalpy 1

Pressure H/M, Reaction Enthalpy 1

Atomic Radius All 4

Covalent Radius All 4

Density All 4

Electron Affinity All 4

Heat of Formation All 4

Lattice Constant All 4

Melting Point All 4

Specific Heat Capacity All 4

Electronegativity Pauling All 4

Electronegativity 
Mulliken

All 4

Atomic Number All 4

Enthalpy of Mixing H/M, Bulk Moduli, 
Phase Prediction

Calculated as Σcilogci, where ci is the concentration 
of the ith element

1

Bulk Modulus H/M Predicted using bulk modulus ML model 1

FCC probability H/M 1

BCC probability H/M

Predicted using phase prediction ML model

1



Atomic Packing Factor All

Calculated as 

4
3
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where is the density of the material, ri and ci are 
the atomic radii and proportion of element  i 
respectively, Mi is the molar mass of element i, and 
Na is Avagadro’s number. 

1

Model evaluation (see the discussion in the main text): Evaluating the performance of machine learning 

models is a critical step in assessing their effectiveness. Here we have considered 4 parameters- R-squared 

(R2) score, Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage 

Error (MAPE), for evaluating our models’ performance (Eq. 1-4). The R-squared score, also known as the 

coefficient of determination, first introduced by Wright [S10] measures the proportion of the variance in 

the target variable that is explained by the model i.e., it shows how well the dependent variable is 

evaluated by all the independent variables [S11]. It varies from 0 to 1 where a higher R2 score means a 

better fit of the dataset. MAE is straightforward and measures the average absolute deviation between 

the model's predicted values and the actual target values. RMSE penalizes heavily to outliers thus making 

it more sensitive to outliers in a dataset, whereas MAPE focuses on percentage error and becomes 

effective in quantifying the relative variations of the predicted data and actual data, but it is ineffective 

when large errors are determined [S11].

𝑅2 = 1 ‒
∑(𝑦𝑖 ‒ 𝑦̂)2

∑(𝑦𝑖 ‒ 𝑦̅)2
(1)

𝑀𝐴𝐸 =
1
𝑁

𝑁

∑
𝑖 = 1

|𝑦𝑖 ‒ 𝑦̂| (2)

𝑅𝑀𝑆𝐸 =
1
𝑁

𝑁

∑
𝑖 = 1

(𝑦𝑖 ‒ 𝑦̂)2 (3)

𝑀𝐴𝑃𝐸 =
1
𝑁

𝑁

∑
𝑖 = 1

|𝑦𝑖 ‒ 𝑦̂|
|𝑦𝑖|

× 100% (4)

where  is the mean value of y,  is the predicted value of y, and  is the i-th data point.𝑦̅ 𝑦̂ 𝑦𝑖

Although it is almost impossible to predict the performance of a machine-learning regression task 

just by one single evaluation parameter, studies show that the R2 score (i.e., the coefficient of 



determination) becomes the most informative and truthful than any other performance matrices like 

MAE, MAPE or RMSE [S11]

Additionally, the atomic size mismatch adopted to measure the LLD effect here is calculated as [10], 

𝛿 = 100
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Where  and  are the atomic percentage and radius of individual constituent elements of the alloy 𝑐𝑖 𝑟𝑖

respectively.

Extended Table of MPEAs high wt.% H2 (see main text Table 1):

Table S2. The Cr-Mg-Nb-Mo-Fe-Ti-V based top eight HEAs with improved hydrogen storage properties 
predicted by ML-GA optimizer, displaying estimated wt% H, formation enthalpy, BCC phase probability, 
and applied constraints. 

HEAs Estimated
H2 wt %

ΔH 
[meV/atom]

% probability of 
BCC phase 

formation (pBCC)

Constraints

Cr0.16Mg0.09Nb0.08Ti0.35V0.32 3.37 -54.53 85% |ΔH| > 40
pBCC > 0.8
cmin = 0.05; cmax = 0.35
5 elements

Cr0.11Fe0.05Mg0.32Ti0.35V0.17 3.18 -61.64 96% |ΔH| > 60
pBCC > 0.8
cmin = 0.05; cmax = 0.35
5 elements

Cr0.11Mg0.15Mo0.15Ti0.29V0.3 3.01 -50.4 98% |ΔH| > 40
pBCC > 0.97
cmin = 0.05; cmax = 0.35
5 elements

Cr0.25Mg0.35Ti0.35V0.05 3.24 -59.7 95% |ΔH| > 40
pBCC > 0.8
cmin = 0.05; cmax = 0.35
4 elements

Cr0.21Nb0.11Ti0.35V0.33 3.45 -38.3 91% |ΔH| > 30
pBCC > 0.7
cmin = 0.05; cmax = 0.35
4 elements

Cr0.09Mg0.73Ti0.18 4.22 -60.7 91% |ΔH| > 40
pBCC > 0.8
cmin = 1.00; cmax = 0.0
3 elements

Cr0.24Fe0.17Mg0.22Ti0.2V0.17 3.05 -51.3 85% |ΔH| > 40
pBCC > 0.8
cmin = 0.2; cmax = 0.25



5 elements

Cr0.21Mg0.3Ti0.27V0.22 3.09 -57 90% |ΔH| > 40
pBCC > 0.8
cmin = 0.2; cmax = 0.25
4 elements

Figure S1. [a-c] Train and test loss on MAE, RMSE, MAPE with respect to data points for reaction enthalpy model; 
[d-f] Train and test loss on MAE, RMSE, MAPE with respect to data points for bulk modulus model. For both cases 
the figures show that the loss function in test dataset (also the error bars) goes down with increasing the number 
of datapoints, which suggest the model did not overfit. Also, this shows the bulk modulus model performs much 
better (with a MAPE of ~5%) compared to the reaction enthalpy model (MAPE>20%) as also predicted in Figure 3 
of main manuscript.



Figure S2. GA convergence vs. penalty strength k. Each panel shows the highest predicted wt% (fitness = predicted 
hydrogen wt% in the current population) as a function of GA round for independent ML-GA replicates (different 
random seeds), with panels for k = 5, 10, 15, 30 and 50 (top left → bottom right). The x-axis is GA round (evaluation 
generation) and the y-axis is the best predicted wt% observed in that round. The parameter k is the multiplicative 
penalty applied inside the fitness function (the “k” penalty term discussed in the text).

Figure S3. Evaluation count required as a function of parameter k. Each point represents the number of evaluations 
needed for a given value of k. The plot shows that the evaluation count increases with k, indicating higher 
computational cost for larger k.



Feature selection and hyperparameter optimization: In addition to the features described in main text, 

we incorporated the featurization and feature selection strategies reported by Zhang et al. [S21]. 

Hyperparameter optimization and feature selection were simultaneously performed using a genetic 

algorithm applied to the 145 default features available in Matminer (Table S3). The developed framework 

is fully generalizable and applicable to both prediction and optimization tasks. For demonstration, we re-

ran our  and phase classification models entirely within this new framework. The updated results are Δ𝐻

shown below. A modest improvement in performance was observed when using LightGBM compared to 

Random Forest, though the enhancement remained marginal even after hyperparameter tuning. 

Importantly, this minor gain did not lead to any qualitative change in the outcomes of the genetic 

algorithm. Detailed results and comparisons of these new techniques are provided in the Supplementary 

Information.

Figure S4. Feature importance for (a) phase classification and (b) formation enthalpy prediction using the updated 
framework. In both models, GS_V_pa (mean) emerges as the dominant descriptor, highlighting the strong role of 
atomic volume in governing phase stability and thermodynamics. Other key contributors include covalent radius, 
unfilled d-states, and space group variability, reflecting the interplay between atomic size, electronic structure, and 
crystallographic symmetry in determining alloy behavior.



Figure S5. SHAP analysis on (a) H/M, (b) Reaction enthalpy, (c) Bulk modulus models. These results agree well with 
the global feature importance plots shown in Figure 3(c, f, i). For all the 3 models we find the top 3-5 global features 
responsible for the ML prediction (Figure 3) also came out in the SHAP analysis. For example, higher values of 
meanElectronegativity Mulliken (blue points on the right of Figure S2 ‘a’) reduce predicted H/M, whereas lower 
values (pink/red points) increase H/M.



Table S3: Feature selection and hyperparameter optimization for phase classification and formation enthalpy 
models for hydrogen storage materials. 

Phase Classification Enthalpy of Formation

Optimal model type Random Forest Random Forest

Old 5-fold CV accuracy/R2 0.77 0.71

New 5-fold CV accuracy/R2 0.80 0.72

Optimized Hyperparameters         "n_estimators": 360,

        "max_depth": 16,

        "min_samples_split": 4,

        "min_samples_leaf": 2,

        "max_features": 0.52,

        "max_samples": 0.85

        "n_estimators": 119,

        "min_samples_split": 3,

        "min_samples_leaf": 2,

        "max_samples": 1.0

Figure S6. Random Forest (RF) based confusion matrix showing lower phase classification accuracy across different 
phases compared to gradient boost classifier (see Fig. 4a).



Figure S7: Thermodynamic phase diagram of Cr-Mg-Ti MPEA at 800 K, showing BCC phase stability over much of 
the Mg composition range. HCP phase appears only for Cr < 0.05 at.-frac. And Ti < 0.4 at.-frac.  

Pair-distribution function: The molecular dynamic simulations were performed within LAMMPS using 

Lennard Jones potentials [S12-S20]. In Figure S8, the radial distribution functions for all five BCC MPEAs 

show a very similar, well-defined first-neighbor peak centered at roughly 2.7 to 3.0  with a peak height Å

of order g(r)  4 to 5 at 300 K, followed by a pronounced second peak near 4.6 to 5.0  with g(r)  1.5 ≈ Å ≈

to 2.0 and weaker, damped oscillations beyond 6 . These features are exactly what one expects for a Å

BCC-derived short-range order: a sharp, high-intensity first peak (nearest-neighbor shell) and subsequent 

broader peaks corresponding to second and higher coordination shells. Small alloy-to-alloy differences 

are visible as slight peak shifts (on the order of  0.1–0.2 Å) and modest variations in first-peak height: ≤

for example one composition (red/MPEA1) shows a marginally higher and slightly left-shifted first peak 

compared with others, consistent with either a slightly smaller average nearest-neighbor distance or 

stronger local ordering around certain species.

Figure S8. Pair distribution function for the five different BCC high entropy alloys (MPEAs) in presence of hydrogen 
as shown in Table 2 at (a) 300 K, and (b) 600 K, showing structural integrity at BCC phase and are in good 
agreement with DFT and ML-GA study.



Mean squared displacement (MSD) profiles of individual atoms calculated with molecular dynamic 
simulation: 

Figure S9. Mean squared displacement (MSD) profiles of individual atoms in ) in MPEA1–MPEA5 at 300 K and 600 K 
(Ti, V, Cr, Nb, Fe, and Mg) in presence of hydrogen as a function of simulation time. The MSD trajectories exhibit 
stable and converged behavior over 10 ns, confirming adequate statistical sampling. Hydrogen shows consistently 
higher MSD values relative to the metallic constituents especially in MPEA1 and MPEA3 at higher temperature, 
indicating its dependence on temperature and alloy compositions.



Electronic-structure analysis of BCC Cr0.09Mg0.73Ti0.18 MEA: In the pristine BCC Cr0.09Mg0.73Ti0.18 alloy [Fig. 

S10a], the projected density of states (PDOS) reveals a metallic character with finite states at the Fermi 

level, primarily arising from Ti and Cr 3d-orbitals, while Mg contributes a broad s-like distribution 

extending below the Fermi level. When hydrogen occupies the octahedral site [Fig. S10a], a distinct H-1s 

peak emerges around -5 eV, well below the Fermi level, signifying a deeply bound and localized hydrogen 

state with minimal hybridization to the surrounding metal orbitals. This deep, isolated H state reflects 

strong ionic-type bonding and limited perturbation of the alloy’s metallic backbone. Conversely, hydrogen 

at the tetrahedral site [Fig. S10a] introduces an H-1s feature that shifts upward to approximately -2 eV 

and overlaps noticeably with Ti and Cr 3d-states, indicating enhanced orbital mixing and stronger covalent 

hybridization. This interaction slightly modifies the metallic DOS near EFermi, suggesting more active 

electronic coupling between H and the transition-metal sublattice. Overall, the octahedral site provides 

deeper stabilization of hydrogen, while the tetrahedral site promotes stronger hybridization without 

disrupting the metallic nature of the alloy.

Figure S10. Projected density of states (PDOS) of BCC Cr0.09Mg0.73Ti0.18 without hydrogen (a), with hydrogen at the 
octahedral site (b), and at the tetrahedral site (c). Black, red, blue, and green lines represent Cr, Mg, Ti, and H-1s 
contributions, respectively. The Fermi level is set to zero energy.
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