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Density-functional theory (DFT) calculations: The electronic-structure, local-lattice distortion, and
hydrogen diffusion analysis was done employing first-principles DFT as implemented in the Vienna Ab-
initio Simulation Package (VASP) [S1,52]. The generalized gradient approximation of Perdew, Burke, and
Ernzerhof (PBE) was employed in all calculations [S3] with a plane-wave cut-off energy of 520 eV. The
choice of PBE over LDA or meta-GGA [S4,S5] functionals is based on the work of Séderling et al. [S6] and
Giese et al. [S7] that establishes the effectiveness of GGA functionals. Large Supercell Random
Approximates (SCRAPs), i.e., 60 atoms per cell, with the optimized disorder (zero-correlation) were
generated (a single, optimized configurational representation) for DFT calculations [S8]. The energy and
force convergence criterion of 108 eV and 106 eV/A, respectively, were used for full (volume and atomic)
relaxation of SCRAPs. The Monkhorst-Pack k-mesh was used for Brillouin zone integration during

structural optimization and charge self-consistency calculations [S9].

Feature engineering: The experimental dataset selected in this study includes only the thermodynamic
features like pressure, temperature, reaction enthalpy alongside atomic compositions. To handle the

scarcity of features, we added different statistical-based atomic and electronic features like Pauling

electronegativity (Hpauling), Mulliken electronegativity (”mulliken), covalent, atomic radii, atomic volume,
weight, density, and local-lattice distortion or atomic-mismatch. We approached our model development
including extended feature list to achieve higher accuracy without bias and overdependence on specific
features. The mean, variance, minimum and maximum values of each of those atomic, electronic and
material features was added, and model was trained using only these feature sets. The mean and variance
were both weighted according to the proportion of the element within each alloy structures.
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Additionally, atomic packing fraction (APF), a measure of how densely the atoms is closely packed
in each structure, is added as a feature which is calculated by the fraction of volume in a crystal structure
that is occupied by the constituent atoms. APF can be a critical feature in hydrogen storage for alloys, as

it is strongly correlated with the availability of interstitial sites where hydrogen atoms can reside within
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lattice structures. The APF is calculated by,
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, Where P is the density of the material,

ri, ¢, and M; are the atomic radii, compositional fraction, and molar mass of i-th element respectively, and

N, is Avogadro’s number. By addition of all these atomic, electronic, and structural features; calculated

from elemental properties using the alloy compositions of the dataset; we finally reached a total of 44

features for each composition (see Metho section in the main text). This statistical approach helps in

reducing bias and prevents over-reliance on all thermodynamic features, thus improving the model’s

accuracy without overfitting, which is the primary objective of this work.

Table S1: Features used in machine learning.

Feature Name Models Used In Notes Dimensions
Temperature H/M, Reaction Enthalpy 1
Pressure H/M, Reaction Enthalpy 1
Atomic Radius All 4
Covalent Radius All 4
Density All 4
Electron Affinity All 4
Heat of Formation All 4
Lattice Constant All 4
Melting Point All 4
Specific Heat Capacity All 4
Electronegativity Pauling | All 4
Electronegativity All 4
Mulliken

Atomic Number All 4
Enthalpy of Mixing H/M, Bulk Moduli, Calculated as 2cjlogc;, where c; is the concentration | 1

Phase Prediction of the it" element

Bulk Modulus H/M Predicted using bulk modulus ML model 1
FCC probability H/M Predicted using phase prediction ML model 1
BCC probability H/M 1




Atomic Packing Factor All 4 3 1
g gnpN “Z (ric;

QM
Calculated as

where is the density of the material, r; and ¢; are
the atomic radii and proportion of element i
respectively, M; is the molar mass of element i, and
N, is Avagadro’s number.

Model evaluation (see the discussion in the main text): Evaluating the performance of machine learning
models is a critical step in assessing their effectiveness. Here we have considered 4 parameters- R-squared
(R?) score, Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage
Error (MAPE), for evaluating our models’ performance (Eq. 1-4). The R-squared score, also known as the
coefficient of determination, first introduced by Wright [S10] measures the proportion of the variance in
the target variable that is explained by the model i.e., it shows how well the dependent variable is
evaluated by all the independent variables [S11]. It varies from O to 1 where a higher R? score means a
better fit of the dataset. MAE is straightforward and measures the average absolute deviation between
the model's predicted values and the actual target values. RMSE penalizes heavily to outliers thus making
it more sensitive to outliers in a dataset, whereas MAPE focuses on percentage error and becomes
effective in quantifying the relative variations of the predicted data and actual data, but it is ineffective

when large errors are determined [S11].
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where Y is the mean value of Y, Y is the predicted value of y, and Yiis the i-th data point.
Although it is almost impossible to predict the performance of a machine-learning regression task

just by one single evaluation parameter, studies show that the R? score (i.e., the coefficient of



determination) becomes the most informative and truthful than any other performance matrices like
MAE, MAPE or RMSE [S11]

Additionally, the atomic size mismatch adopted to measure the LLD effect here is calculated as [10],

(5)

Where i and "i are the atomic percentage and radius of individual constituent elements of the alloy
respectively.

Extended Table of MPEAs high wt.% H, (see main text Table 1):

Table S2. The Cr-Mg-Nb-Mo-Fe-Ti-V based top eight HEAs with improved hydrogen storage properties

predicted by ML-GA optimizer, displaying estimated wt% H, formation enthalpy, BCC phase probability,
and applied constraints.

HEAs Estimated AH % probability of Constraints
H, wt % [meV/atom] BCC phase
formation (pBCC)

Crg'lsMgO'ggN b0408Ti0.35V0.32 3.37 -54.53 85% IAH | >40

Pecc > 0.8

Coin = 0.05; Crna = 0.35
5 elements

Cro.11Fe0.0sMgo.32Ti0.35Vo.17 3.18 -61.64 96% [AH]| > 60
Pecc > 0.8

Crin= 0.05; Crax=0.35
5 elements

Crp.11Mgp.15sM0g.15Tip 29V0 3 3.01 -50.4 98% |AH| > 40

pecc > 0.97

Cmin = 0.05; cax=0.35
5 elements

Cro.2sM8o.35Tio.35Vo.05 3.24 -59.7 95% |AH| > 40
Pecc > 0.8

Crin= 0.05; Crax=0.35
4 elements

Croo1N bo'llTi0.35V0'33 3.45 -38.3 91% IAH | >30

Pecc > 0.7

Cmin = 0.05; Crmax=0.35
4 elements

Cro.0sMgo.73Tio.18 4.22 -60.7 91% |AH| > 40

Pecc > 0.8

Cmin = 1.00; Crax= 0.0
3 elements

Cro.24F€0.17Mg0.25Tio.2Vo.17 3.05 -51.3 85% |AH| > 40
Pgcc > 0.8
Crmin = 0.2; Cmax=0.25
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Figure S1. [a-c] Train and test loss on MAE, RMSE, MAPE with respect to data points for reaction enthalpy model;
[d-f] Train and test loss on MAE, RMSE, MAPE with respect to data points for bulk modulus model. For both cases
the figures show that the loss function in test dataset (also the error bars) goes down with increasing the number
of datapoints, which suggest the model did not overfit. Also, this shows the bulk modulus model performs much

better (with a MAPE of ~5%) compared to the reaction enthalpy model (MAPE>20%) as also predicted in Figure 3
of main manuscript.
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Figure S2. GA convergence vs. penalty strength k. Each panel shows the highest predicted wt% (fitness = predicted
hydrogen wt% in the current population) as a function of GA round for independent ML-GA replicates (different
random seeds), with panels for k = 5, 10, 15, 30 and 50 (top left > bottom right). The x-axis is GA round (evaluation
generation) and the y-axis is the best predicted wt% observed in that round. The parameter k is the multiplicative
penalty applied inside the fitness function (the “k” penalty term discussed in the text).
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Figure S3. Evaluation count required as a function of parameter k. Each point represents the number of evaluations
needed for a given value of k. The plot shows that the evaluation count increases with k, indicating higher
computational cost for larger k.



Feature selection and hyperparameter optimization: In addition to the features described in main text,
we incorporated the featurization and feature selection strategies reported by Zhang et al. [S21].
Hyperparameter optimization and feature selection were simultaneously performed using a genetic
algorithm applied to the 145 default features available in Matminer (Table S3). The developed framework
is fully generalizable and applicable to both prediction and optimization tasks. For demonstration, we re-
ran our AH and phase classification models entirely within this new framework. The updated results are
shown below. A modest improvement in performance was observed when using LightGBM compared to
Random Forest, though the enhancement remained marginal even after hyperparameter tuning.
Importantly, this minor gain did not lead to any qualitative change in the outcomes of the genetic

algorithm. Detailed results and comparisons of these new techniques are provided in the Supplementary

Information.
Feature Importance Feature Importance
Phase Classification Formation Enthalpy
[a] [b]
GS V_pa mean GS V_pa mean
R covalent, mean Temperature
N_Unﬁ"ed inea N_d_Unﬁ"ed mode
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Figure S4. Feature importance for (a) phase classification and (b) formation enthalpy prediction using the updated
framework. In both models, GS_V_pa (mean) emerges as the dominant descriptor, highlighting the strong role of
atomic volume in governing phase stability and thermodynamics. Other key contributors include covalent radius,
unfilled d-states, and space group variability, reflecting the interplay between atomic size, electronic structure, and

crystallographic symmetry in determining alloy behavior.
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Figure S5. SHAP analysis on (a) H/M, (b) Reaction enthalpy, (c) Bulk modulus models. These results agree well with
the global feature importance plots shown in Figure 3(c, f, i). For all the 3 models we find the top 3-5 global features
responsible for the ML prediction (Figure 3) also came out in the SHAP analysis. For example, higher values of
meanElectronegativity Mulliken (blue points on the right of Figure S2 ‘@’) reduce predicted H/M, whereas lower
values (pink/red points) increase H/M.



Table S3: Feature selection and hyperparameter optimization for phase classification and formation enthalpy
models for hydrogen storage materials.

Phase Classification Enthalpy of Formation

Optimal model type Random Forest Random Forest

Old 5-fold CV accuracy/R? 0.77 0.71

New 5-fold CV accuracy/R? 0.80 0.72

Optimized Hyperparameters "n_estimators": 360, "n_estimators": 119,
"max_depth": 16, "min_samples_split": 3,
"min_samples_split": 4, "min_samples_leaf": 2,
"min_samples_leaf": 2, "max_samples": 1.0
"max_features": 0.52,
"max_samples": 0.85

Phase Prediction

BCC{ O.76 [0 TR0 N0 2. R i i | 0.8

FCC 0.019 0.077 0.6
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FCC+BCC JLtN K h B K
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Figure S6. Random Forest (RF) based confusion matrix showing lower phase classification accuracy across different
phases compared to gradient boost classifier (see Fig. 4a).
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Figure S7: Thermodynamic phase diagram of Cr-Mg-Ti MPEA at 800 K, showing BCC phase stability over much of
the Mg composition range. HCP phase appears only for Cr < 0.05 at.-frac. And Ti < 0.4 at.-frac.

Pair-distribution function: The molecular dynamic simulations were performed within LAMMPS using
Lennard Jones potentials [S12-S20]. In Figure S8, the radial distribution functions for all five BCC MPEAs
show a very similar, well-defined first-neighbor peak centered at roughly 2.7 to 3.0 A with a peak height
of order g(r) ® 4to 5 at 300 K, followed by a pronounced second peak near 4.6 to 5.0 A with g(r) = 1.5
to 2.0 and weaker, damped oscillations beyond 6 A. These features are exactly what one expects for a
BCC-derived short-range order: a sharp, high-intensity first peak (nearest-neighbor shell) and subsequent
broader peaks corresponding to second and higher coordination shells. Small alloy-to-alloy differences
are visible as slight peak shifts (on the order of = 0.1-0.2 A) and modest variations in first-peak height:
for example one composition (red/MPEA1) shows a marginally higher and slightly left-shifted first peak
compared with others, consistent with either a slightly smaller average nearest-neighbor distance or

stronger local ordering around certain species.
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Figure S8. Pair distribution function for the five different BCC high entropy alloys (MPEAs) in presence of hydrogen
as shown in Table 2 at (a) 300 K, and (b) 600 K, showing structural integrity at BCC phase and are in good
agreement with DFT and ML-GA study.



Mean squared displacement (MSD) profiles of individual atoms calculated with molecular dynamic

simulation:
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Figure S9. Mean squared displacement (MSD) profiles of individual atoms in ) in MPEA1-MPEAS at 300 K and 600 K
(Ti, V, Cr, Nb, Fe, and Mg) in presence of hydrogen as a function of simulation time. The MSD trajectories exhibit
stable and converged behavior over 10 ns, confirming adequate statistical sampling. Hydrogen shows consistently
higher MSD values relative to the metallic constituents especially in MPEA1 and MPEA3 at higher temperature,
indicating its dependence on temperature and alloy compositions.



Electronic-structure analysis of BCC Cry4oMgg 73Tig.1s MEA: In the pristine BCC CrgoMgp 73Tig 15 alloy [Fig.
S$10a], the projected density of states (PDOS) reveals a metallic character with finite states at the Fermi
level, primarily arising from Ti and Cr 3d-orbitals, while Mg contributes a broad s-like distribution
extending below the Fermi level. When hydrogen occupies the octahedral site [Fig. S10a], a distinct H-1s
peak emerges around -5 eV, well below the Fermi level, signifying a deeply bound and localized hydrogen
state with minimal hybridization to the surrounding metal orbitals. This deep, isolated H state reflects
strong ionic-type bonding and limited perturbation of the alloy’s metallic backbone. Conversely, hydrogen
at the tetrahedral site [Fig. S10a] introduces an H-1s feature that shifts upward to approximately -2 eV
and overlaps noticeably with Ti and Cr 3d-states, indicating enhanced orbital mixing and stronger covalent
hybridization. This interaction slightly modifies the metallic DOS near Eg.mi, suggesting more active
electronic coupling between H and the transition-metal sublattice. Overall, the octahedral site provides
deeper stabilization of hydrogen, while the tetrahedral site promotes stronger hybridization without
disrupting the metallic nature of the alloy.

1

T
[a] \Cr Mg Ti
051 !

PDOS

Figure S10. Projected density of states (PDOS) of BCC Cry0sMgg 73Tip.1s Without hydrogen (a), with hydrogen at the
octahedral site (b), and at the tetrahedral site (c). Black, red, blue, and green lines represent Cr, Mg, Ti, and H-1s
contributions, respectively. The Fermi level is set to zero energy.
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