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Fig. S1. a-b) SEM images of CPAN separator.

Fig. S2. The HAADF-STEM image of CPAN separator.

Fig. S3. The contact angle tests of (a) H2O and (b) 2 M ZnSO4 electrolyte on the PAN@Zn.
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Fig. S4. Optical images of a) Zn foil and b) CuZn anode.

 

Fig. S5. Copper ion concentration in the electrolyte measured by ICP-OES at different cycles.

Fig. S6. The snapshots of the MD simulation for a) Cu(Ac)2, b) PAN, c) SO4
2- and d) H2O.
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Fig. S7. The snapshots of the MD simulation of CPAN separator in ZnSO4 electrolyte for 0 ps and 300 

ps.
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Fig. S8. The adsorption sites of zinc atom on the surfaces of Zn and CuZn alloy, respectively.

Fig. S9. The adsorption sites of H2O on the surfaces of Zn and CuZn alloy, respectively.
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Fig. S10. Coulombic efficiencies of Zn||Cu cells with PAN separator.

Fig. S11. (a) Voltage profiles of Zn stripping/plating process in Zn||Cu cells with different separators at 1 

mA cm-2, 1 mAh cm-2. (b) The first cycle over potentials of Zn deposition on the bare Cu by using CPAN 

and GF separator, respectively. (c) Nyquist plots of GPAN, PAN, and GF with two stainless blocking 

electrodes and the calculated ionic conductivity. 
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Fig. S12. Rate capability of Zn||Zn cells using different separator.

Fig. S13. Electrochemical performance of the zinc anodes coupled with different separators.[1-8] The 

corresponding performance values are shown in Table S1.
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Fig. S14. Cycling performance of Zn||Zn cells with GF separator and CPAN separator at (a) 20 mA cm-2 

with 5 mAh cm-2 and (b) 20 mA cm-2 with 10 mAh cm-2.
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Fig. S15. (a) Long cycling performance of Zn||Zn cells using 2M ZnSO4 with 5 mM Zn(Ac)2 and 2M 

ZnSO4 with 5 mM Cu(Ac)2. (b) Long cycling performance of Zn||Zn cells using GF, PAN and CPAN 

separators. (c) Long cycling performance of Zn||Zn cells using different mass ratio of PAN: 

Cu(CH3COO)2. 



S9

Fig. S16. Typical SEM image of Zn anode after 50 cycles with GF separator.

 

Fig. S17. Typical SEM image of Zn anode after 50 cycles with CPAN separator.
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Fig. S18. XRD pattern of β-MnO2 cathode.

Fig. S19. The electrochemical impedance spectroscopy (EIS) spectra of full cells.
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Fig. S20. Discharge/discharge curves of MnO2||Zn full cells with (a) CPAN and (b) GF separator at 

different current density.

Fig. S21. Discharge/discharge curves of MnO2||Zn full cell with (a) CPAN and (b) GF separator at 0.2 A 

g-1.
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Fig. S22. Optical image of MnO2 electrode.

Fig. S23. Photograph of MnO2||Zn pouch cell under bending states.
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Table S1. Performance of the zinc anodes with different separators.

Current 

 (mA cm-2)

Capacity (mAh 

cm-2) 

Time 

(h)

Thickness 

(μm)

Maximum

current
Ref.

1 1 980 50 10 1

1 1 500 260 10 2

1 0.5 480 260 1 3

0.5 0.5 1150 50 5 4

0.2 0.05 1200 265 4 5

0.5 0.5 810 134 5 6

0.1 0.1 350 260 0.1 7

0.283 800 69 0.283 8

1 1 1500 37 20 This work
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