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Table S1 Specific surface areas of the catalysts.

Catalysts HEO@NF HEO-H400@NF  HEO-H500@NF HEO-H600@NF

SpeT(M?/g) 17.486 24.164 42.515 38.778

Table S2 XPS Analysis of Ni Elements on nickel foam self-supported electrode after H, treatment

at different temperatures

Sample Ni(852.5 eV) Ni2" (854.85e¢V)  Ni¥* (856.60 eV)
HEO@NF ~ 41.13 58.87
HEO-H400@NF 16.31 44.37 39.32
HEO-H500@NF 16.30 48.08 35.62
HEO-H600@NF 33.83 25.63 40.55

Table S3 XPS Analysis of HEO@NF and HEO-H500@NF

Element HEO@NF HEO-H500@NF
Fe2(710.5 eV) 69.43 49.69
Fe3*(712.5 eV) 30.57 50.31
Ni (852.5 eV) 16.30

Ni2(854.85 eV) 41.13 48.08
Ni*(856.60 V) 58.87 35.62
C0?"(782.2 eV) 48.15 40.75
Co*(780.2 V) 51.85 59.25
Mn*(641.7 eV) 60.74 76.54
Mn*(644.8 eV) 39.26 23.46
Cr}*(576.2 V) 64.12 55.81

Cr%7(578.3 eV) 35.88 44.19




Table S4 TOF values for all samples

Sample j at overpotential of 300 mV.( mA/cm?) TOF(s")
HEO@NF 11 331
HEO-400@NF 22 6.62
HEO-500@NF 270 81.33
HEO-600@NF 105 31.63
HEO-500+NF 44 13.25

Table S5 Overpotential and tafel slope of spinel metal oxides reported in this paper and literature

at 100 mA cm (All electrolytes were 1 M KOH)

Catalyst Overpotential at 100 Tafel Slope Reference
mA cm?2 (mV) (mV dec)

HEO-H500@NF 280 40.3 This work
(FeNiCoCuV);04 308 48.5 [1
(FeCoNiMnZn);04 422 53 [2]
(FeCoNiCrMn);04 300 41.2 [3]
S-(FeNiCoMnCr);04 285 323 [4]
(FeNiCoMnCr);04 340 53.7 [5]
(FeCoNiCrMn);04 300 524 [6]

(CoMn;3NiFeZn);0, 410 53.5 [7]




Table S6 Overpotential and tafel slope of self-supporting high entropy electrode reported in this
paper and literature at 100 mA cm2(All electrolytes were 1 M KOH)

Catalyst Overpotential at 100 Tafel Slope Reference
mA cm2 (mV) (mV dec)

HEO-H500@NF 280 40.3 This work
(CrMnFeCoCu);04@CC 380 59.4 [8]
(FeCoMnZnMg);04@NF 390 59 [9]
FeCoNiCrMn HEA@NF >320 64.3 [10]

AlFeCoNi;Moy, HEA 370 72 [11]
AlCoCrFeNi HEA 366 53.4 [12]
NiCoFeMnCrO@NF 294 46.7 [13]
CoCrFeNiNb HEA 304 427 [14]
FeCoNiCrMn HEA@NF 355 49.29 [15]

Table S7 Equivalent Circuit Parameters for Samples of HEO-HX@NF

Sample Rs(QY) Ret (Q) CdI-T CdI-P
HEO@NF 1.329 224.9 0.093277 0.74671
HEO-H400@NF 1.378 22.39 0.17609 0.82518
HEO-H500@NF 1.315 11.26 0.10813 0.82345

HEO-H600@NF 1.157 12.59 0.0931 0.83714




Table S8 XPS Analysis of HEO-H500@NF before and after OER

Element Before OER (at.%) After OER (at.%)
Fe?"(710.5 eV) 45.19 49.69
Fe*"(712.5 eV) 54.81 50.31

Ni(852.5 eV) 16.30 -
Ni?*(854.85 eV) 48.08 38.18
Ni**(856.60 V) 35.62 68.12
Co**(782.2 V) 40.75 16.35
Co*(780.2 eV) 59.25 83.65
Mn3*(641.7 eV) 76.54 66.43
Mn**(644.8 eV) 23.46 33.57
Cr**(576.2 eV) 55.81 35.30
Cr67(578.3 eV) 44.19 64.70

Fig. S1 SEAD image of HEO-H500@NF electrode.
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Fig. S4 Nitrogen adsorption-desorption isotherms of self-supported foam nickel electrode after H2

treatment at different temperatures
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Fig. S6 High resolution Ni 2p spectra of nickel foam self-supported electrode after H, treatment at
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Fig. S7 High resolution O 1s spectra of nickel foam self-supported electrode after H, treatment at



different temperatures
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Fig. S8 ESR spectra of nickel foam self-supported electrode after H, treatment at different
temperatures
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Fig. S9 Over potential( 100 mA/cm?) and Tafel slopes of the as-synthesized electrodes in 1.0 m
KOH.
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Fig. S10 Electrochemical performances of NF and H500@NF
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Fig. S11 XRD of HEO-H500@NF before and after activation



Fig. S12 The adsorption model of H,O onto the (3 1 1) of (a, b) pristine (FeNiCoMnCr);04 and (c
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Fig. S13 The CV Cure of nickel foam self-supported electrode after H, treatment at different

temperatures
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Fig. S14 XPS of HEO-H500@NF Before and after OER (a) full spectra (b) Fe 2p spectra (¢c)Ni 2p
(d) Co 2p spectra (e) Mn 2p spectra (f) Cr 2p spectra

HEO-H500@NF

—_ 02:33.25%

3

& —= -
>,

= After OER

=

%]

= 02:37.69%

!

538 536 534 532 530 528 526

Binding Energy (eV)
Fig. S15 Before and after OER O1s XPS of HEO-H500@NF
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Fig. S16 ESR spectra of HEO-H500@NF before and after OER
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Fig. S19. Gibbs free energies diagram for the OER process catalyzed by (FeNi)(OH)x,
(FeNiCo)(OH)x, (FeNiCoMn)(OH)x and (FeNiCoMnCr)(OH)x.



Fig. S20 SEM of HEO-H500@NF before and after activation (a)before OER (b)after OER
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