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Table S1 Specific surface areas of the catalysts.

Catalysts HEO@NF HEO-H400@NF HEO-H500@NF HEO-H600@NF

SBET(m2/g) 17.486 24.164 42.515 38.778

Table S2 XPS Analysis of Ni Elements on nickel foam self-supported electrode after H2 treatment 

at different temperatures

Sample Ni(852.5 eV) Ni2+（854.85 eV） Ni3+（856.60 eV）

HEO@NF -- 41.13 58.87

HEO-H400@NF 16.31 44.37 39.32 

HEO-H500@NF 16.30 48.08 35.62

HEO-H600@NF 33.83 25.63 40.55

Table S3 XPS Analysis of HEO@NF and HEO-H500@NF

Element HEO@NF HEO-H500@NF

Fe2+(710.5 eV) 69.43 49.69

Fe3+(712.5 eV) 30.57 50.31

Ni (852.5 eV) 16.30

Ni2+(854.85 eV) 41.13 48.08

Ni3+(856.60 eV) 58.87 35.62

Co2+(782.2 eV) 48.15 40.75

Co3+(780.2 eV) 51.85 59.25

Mn3+(641.7 eV) 60.74 76.54

Mn4+(644.8 eV) 39.26 23.46

Cr3+(576.2 eV) 64.12 55.81

Cr6+(578.3 eV) 35.88 44.19



Table S4 TOF values for all samples

Sample j at overpotential of 300 mV.( mA/cm2) TOF(s-1)

HEO@NF 11 3.31

HEO-400@NF 22 6.62

HEO-500@NF 270 81.33

HEO-600@NF 105 31.63

HEO-500+NF 44 13.25

Table S5 Overpotential and tafel slope of spinel metal oxides reported in this paper and literature 

at 100 mA cm-2 (All electrolytes were 1 M KOH)

Catalyst Overpotential at 100 

mA cm-2 (mV)

Tafel Slope

(mV dec-1)

Reference

HEO-H500@NF 280 40.3 This work

(FeNiCoCuV)3O4 308 48.5 [1]

(FeCoNiMnZn)3O4 422 53 [2]

(FeCoNiCrMn)3O4 300 41.2 [3]

S-(FeNiCoMnCr)3O4 285 32.3 [4]

(FeNiCoMnCr)3O4 340 53.7 [5]

(FeCoNiCrMn)3O4 300 52.4 [6]

(Co Mn3NiFeZn)3O4 410 53.5 [7]



Table S6 Overpotential and tafel slope of self-supporting high entropy electrode reported in this 

paper and literature at 100 mA cm-2(All electrolytes were 1 M KOH)

Catalyst Overpotential at 100 

mA cm-2 (mV)

Tafel Slope

(mV dec-1)

Reference

HEO-H500@NF 280 40.3 This work

(CrMnFeCoCu)3O4@CC 380 59.4 [8]

(FeCoMnZnMg)3O4@NF 390 59 [9]

FeCoNiCrMn HEA@NF ＞320 64.3 [10]

AlFeCoNi3Mo0.2 HEA 370 72 [11]

AlCoCrFeNi HEA 366 53.4 [12]

NiCoFeMnCrO@NF 294 46.7 [13]

CoCrFeNiNb HEA 304 42.7 [14]

FeCoNiCrMn HEA@NF 355 49.29 [15]

Table S7 Equivalent Circuit Parameters for Samples of HEO-HX@NF

Sample Rs(Ω) Rct (Ω) Cdl-T Cdl-P

HEO@NF 1.329 224.9 0.093277 0.74671

HEO-H400@NF 1.378 22.39 0.17609 0.82518

HEO-H500@NF 1.315 11.26 0.10813 0.82345

HEO-H600@NF 1.157 12.59 0.0931 0.83714



Table S8 XPS Analysis of HEO-H500@NF before and after OER

Element Before OER（at.%） After OER（at.%）

Fe2+(710.5 eV) 45.19 49.69

Fe3+(712.5 eV) 54.81 50.31

Ni(852.5 eV) 16.30 --

Ni2+(854.85 eV) 48.08 38.18

Ni3+(856.60 eV) 35.62 68.12

Co2+(782.2 eV) 40.75 16.35

Co3+(780.2 eV) 59.25 83.65

Mn3+(641.7 eV) 76.54 66.43

Mn4+(644.8 eV) 23.46 33.57

Cr3+(576.2 eV) 55.81 35.30

Cr6+(578.3 eV) 44.19 64.70

(1 1 1)
(2 2 2)

(4 0 0)
(5 1 1)

5 nm-1

Fig. S1 SEAD image of HEO-H500@NF electrode.
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Fig. S2 XRD calculation model of (FeNiCoMnCr)3O4
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Fig. S3 Raman of HEO@NF and HEO-H500@NF

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

120

140

160

N
2 a

ds
or

pt
io

n 
(c

m
3  g

-1
 st

p)

Relative Pressure (P/P0)

 HEO@NF
 HEO-H400@NF
 HEO-H500@NF
 HEO-H600@NF

Fig. S4 Nitrogen adsorption-desorption isotherms of self-supported foam nickel electrode after H2 

treatment at different temperatures
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Fig. S5 XPS full spectra of HEO@NF and HEO-H500@NF
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Fig. S6 High resolution Ni 2p spectra of nickel foam self-supported electrode after H2 treatment at 

different temperatures
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Fig. S7 High resolution O 1s spectra of nickel foam self-supported electrode after H2 treatment at 



different temperatures
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Fig. S8 ESR spectra of nickel foam self-supported electrode after H2 treatment at different 

temperatures
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Fig. S9 Over potential( 100 mA/cm2) and Tafel slopes of the as-synthesized electrodes in 1.0 m 

KOH.
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Fig. S10 Electrochemical performances of NF and H500@NF
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Fig. S11 XRD of HEO-H500@NF before and after activation
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(FeNiCoMnCr)3O4-Ov (311) (FeNiCoMnCr)3O4-Ov (311)+H2O
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Fig. S12 The adsorption model of H2O onto the (3 1 1) of (a, b) pristine (FeNiCoMnCr)3O4 and (c 

d) (FeNiCoMnCr)3O4-OV. ( C-axis projection)
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Fig. S13 The CV Cure of nickel foam self-supported electrode after H2 treatment at different 

temperatures 
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Fig. S14 XPS of HEO-H500@NF Before and after OER (a) full spectra (b) Fe 2p spectra (c)Ni 2p 

(d) Co 2p spectra (e) Mn 2p spectra (f) Cr 2p spectra 
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Fig. S15 Before and after OER O1s XPS of HEO-H500@NF 
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Fig. S16 ESR spectra of HEO-H500@NF before and after OER
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Fig. S17 The calculation model (a) (FeNiCoMnCr)(OH)x (b) (FeNiCoMnCr)(OH)x-Ov 
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Fig. S18 The calculation model (a)(NiFe)(OH)x (b)(NiFeCo)(OH)x (c) (NiFeCoMn)(OH)x 

(d)(FeNiCoMnCr) (OH)x 
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Fig. S19. Gibbs free energies diagram for the OER process catalyzed by (FeNi)(OH)x, 

(FeNiCo)(OH)x, (FeNiCoMn)(OH)x and (FeNiCoMnCr)(OH)x.
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Fig. S20 SEM of HEO-H500@NF before and after activation (a)before OER (b)after OER
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