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Table S1. Band gap energies (E,) of different literature structures computed using the PBE+U
functional after geometry optimization. All gaps are scissor-corrected by +0.93 and +1.20 eV for the
Cu-In-Se and Cu-Ga-Se systems, respectively (same as in Fig. 2). The enthalpies above the hull (AH,.;)
or formation enthalpies relative to the ground state (AH;) are presented alongside the band gap;
these values were computed using the PBE (without parentheses) and PBEsol (within parentheses)
functionals in Part | of this study. The light green, pink, blue, and black spheres in the figures
represent Se anions, group-Ill cations, Cu cations, and vacancies, respectively.

Literature source and |Space| AH,,; [meV/atom] E, [eV] Structures
identifier group| CulnsSeg | CuGasSeg | CulnsSeg | CuGasSeg (not optimized)

“Type-A” in Refs. #1,2
“mp-1212167" in

Ref. #3
7 _ 6.4 10.5
"P42m” in Ref. #4,5 |P42m (7.9) (10.2) 1.25 1.70
Entry ID: 1731504 (also ' '
6620 and 1731502) in
Ref. #6
“Type-B” in Refs. #1,2 | P42m (;'i) (190'78) 1.24 1.69
“Type-C” in Refs. #1,2 | [Am2 (Z'g) (ﬁ':) 1.07 1.40

“Type-D” in Refs. #1,2
Zhang et al.”?
Ghorbani et al.®
Kiss et al. 1011 C2 é'i) (2'1) 1.23 1.69
Xiao and Goddard?? ’ )
Pohl and Albe®3
Malitckaya et al.1*

“Type-E” in Refs. #1,2
Sharan et al.*®

Maeda et al.1® 10.5 12.7

'/ 1.24 1.7
Jiang and Feng?’ P4 (10.4) (11.8) d
Kumar et al.18

Tu et al.?®




“New-1” in Ref. #1 | Pan2 (431:2) (:é) 114 | 1.49
“New-2" in Ref. #1  |Amm2 (2:3) (273:2) 1.12 1.60
“C222” in Liuetal* | c222 (z:;) (2:;) 1.36 1.88
P?Zr:)ﬁﬂﬂhlijfé‘)dy Aeaz (8:(1)) (8:8) 131 ) 1.98
(Zﬁéﬂlﬁflzisssfaﬁl) Ibaz (8:8) (812) 139 | 203




Literature source and |[Space| AH,, [meV/atom] E, [eV] Structures
identifier group| CulnsSes | CuGasSes | CulnsSes | CuGasSes (not optimized)
6.5 5.4
Refs. #3-5 P1 (7.6) (5.6) 1.36 2.07
Part | of this study 0.0 0.0
(ground state) Ce (0.0) (0.0) 1.19 191
Lehmann et al.?° 42 3 3 3 B
for CulnsSes m
Lehmann et al.2° 12 3 3 3 B
for CuGasSes m
Literature source and |Space| AH,, [meV/atom] E; [eV] Structures
identifier group | Cu,ln,Se; |Cu,GasSe;| Cuyln,Se; |Cu,GasSey (not optimized)
Yarema et al.?! 29.2 31.1
P3
for Cu,In,Se; 2 (30.1) | (31.4) 1.23 1.80




Part | of this study 0.0 0.0
1.2 1.
(ground state) c2 (0.0) (0.3) 0 89
Literature source and |Space| AH,, [meV/atom] E, [eV] Structures
identifier group | CuslnsSeq |CuszGasSeq| CuslnsSeg |CusGasSeq (not optimized)
Yarema et al.?! 16.6 18.8
P3
for CuslnsSes 2| (17.5) | (19.1) 1.05 163
Moser et al.??
11.5 13.9
P2
for A.g3ln55(?9 1 (11.2) (13.5) 1.15 1.73
(wurtzite lattice)
Part | of this study 0.0 0.0
(ground state) ¢z (0.0) (0.4) 115 183
Literature source and |Space| AH;[meV/atom] E, [eV] Structures
identifier group| CulnSe, | CuGaSe, | CulnSe, | CuGaSe, (not optimized)
. _ 0.0 0.0
Chalcopyrite 142d (0.0) (0.0) 0.99 1.67




CuAu-type

P4m2

2.2
(2.3)

9.7
(9.0)

Falsely
metallic
with
PBE+U

1.32




Table S2. Literature data of band gaps (E,) measured for different compositions in the Cu-In-Se and
Cu-Ga-Se systems. For incomplete and conflicting datasets, rational estimations are made, with
room-temperature values and ODC-like structures taking precedence (although add-mixtures of
hexagonal y-CiSe are likely to yield errors — the values for samples with y-ClSe signature are marked
by asterisks). When not state by the source, the atomic fractions were inferred from the compound
formulae and given in parentheses below. All band gaps from this table are collectively depicted in
Fig. 2 as the “literature” scatterplot.

Suggested ODC [Cul] [In] [Se] .

?gr - [at.%] (at.%] [at.%] Eg [eV] Literature source
1:3:5 11.7 31.1 57.1 1.22 Marin et al.?
1:3:5 9.5 29.2 61.3 1.20 Rincon et al.?
1:3:5 (11.111) | (33.333) | (55.556) 1.154 Marin et al.?°
1:3:5 10.69 33.85 55.46 1.26 Kim et al.26
1:3:5 11.7 32.6 55.7 1.23 Negami et al.?’

2:4:7/1:3:5 16.6 31.1 52.3 1.15 Ledn et al.?8%°
1:1:2 (25) (25) (50) 1.05 Contreras et al.?®
1:1:2 (25) (25) (50) 1.04 Alonso et al.3!
1:1:2 (25) (25) (50) 0.99

(a-phase) 21.951 26.829 51.22 0.99

(B-phase) 13.636 31.818 54.545 1.13
135 (11.111) | (33.333) | (55.556) 1.17 Maeda et al.

(B-phase) 8.696 34.783 56.522 1.22%*

1:5:8 (7.143) (35.714) | (57.143) 1.23*

*

1:5:8 7.90 36.65 54.25 11..22318* Levcenko et al.3?

iss [ ies | 82 | 50 | 118 Fidich et o

2:4:7 16.0 33.6 50.4 1.22 Reddy and Raja3*

1:3:5 (11.111) | (33.333) | (55.556) 1.31 Schmid et al.?®

1:5:8 (7.143) (35.714) | (57.143) 1.17* Duran et al.3¢

2 | 24 | 2 | e | oss | PipendPradeep”

1:3:5 11.2 35.6 53.2 1.23 Ariswan et ol 3

1:3:5 11.9 37.9 50.2 1.23

1:5:8 (7.143) (35.714) | (57.143) 1.13* Hernandez et al.?°
Suggested ODC [¢[7 (t:g] [ﬁ?’/i ] [ﬁeé ] Bar[rgvg];ap Literature source

1:3:5 (11.111) | (33.333) | (55.556) 1.86

1:3:5 (11.111) | (33.333) | (55.556) 1.81 Marin et al.*°

1:3:5 (11.111) | (33.333) | (55.556) 1.818 Rincon et al.?*

1:3:5 (11.111) | (33.333) | (55.556) 1.833

1:3:5 (11.111) | (33.333) | (55.556) 1.754 Marin et al.?°

1:3:5 114 32.1 56.5 1.85 Negami et al.?’

1:3:5 13.1 34.55 52.35 1.88

1:3:5 12.7 35.08 52.22 1.88 Ledn et al. 8%

1.5:8 8.73 37.05 54.2 1.88

1:1:2 (25) (25) (50) 1.67 Contreras et al.?°

1:1:2 (25) (25) (50) 1.648 Alonso et al.?!

1:1:2 (25) (25) (50) 1.68 Shay and Tell*!




1:3:5 (11.111) | (33.333) | (55.556) 1.85 Ueda et al.®2
1:3:5 11.7 32.2 56.1 1.71 Levcenko et al.*3
1:5:8 (7.143) | (35.714) | (57.143) 1.852 Wasim et al.*
1:5:8 8.9 24.1 67.0 1.97

1:5:8 7.9 24.8 67.3 2.01

1:5:8 7.6 22.1 70.3 1.76 Friedrich et al.33
1:3:5 8.2 28.0 63.8 1.88

1:3:5 6.8 23.8 69.4 1.97

1:5:8 (7.143) | (35.714) | (57.143) 1.82 Durén et al.3
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Figure S1. As-computed band gap energies of the (near-)stable zinc-blende-derived structures in the
(a) Cu-In-Se and (b) Cu-Ga-Se systems computed using different functionals (no scissor correction
applied). Besides the four functionals used for the analysis of electronic properties in the main text,
the results obtained with the SCAN and PBEsol functionals are provided for comparison. All results
except the mBJ-computed were obtained for the structures optimized with the corresponding
functional. For the band gaps computed using mBJ, which is a potential-only functional, the PBEsol-
optimized geometries were analyzed instead. The effect of structural relaxation on the band gap is
illustrated in Fig. S2. The results from the PBE, PBEsol, and SCAN calculations are excluded for the Cu-
In-Se system because some structures are erroneously metallic, due to the well-known band gap
underestimation error.
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Figure S2. Comparison of the as-computed band gaps determined with different functionals in the (a)

Cu-In-Se and (b) Cu-Ga-Se systems with and without structural optimization. The PBE results are

excluded for the Cu-In-Se system because some structures are erroneously metallic, due to the well-
known band gap underestimation error.
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Figure S3. Computed band gap energies as functions of (a) CA-type fraction and (b) formation
enthalpy relative to the ground state (AHy) for various 1:1:2 polytypes. All band gaps here were
calculated using the PBE+U functional (after geometry optimization) with a Hubbard U correction of
8 eV applied to the Cu 3d orbitals, which prevents the falsely metallic character observed in most
CulnSe; polytypes when the default parameter is used. The scissor corrections were adjusted to
+0.69 eV for CulnSe, and +0.96 eV for CuGaSe, polytypes. The formation enthalpies were computed
using the PBE functional in Part | of this study.
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Figure S4. Band gap energies of various (a) CulnsSeg and (b) CuGasSeg polytypes as a function of their
formation enthalpies relative to the ground state (AHy). The data was computed using the PBE
functional during the high-throughput screening described in Part |. The red and blue markers denote
literature-reported structures and structures generated in the screening, respectively. Note that
many CulnsSeg polytypes are incorrectly predicted to be metallic by the PBE functional.
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Figure S5. Densities of states for different (near-)stable Cu-In-Se phases computed with different
functionals. All calculations were done for the PBEsol-optimized geometries. No adjustment of the
band gaps was performed. In contrast to Fig. 3, all DOS presented here were computed using a
relatively loose k-point grid density of 3000 (for PBE, PBE+U, and mBJ) or 1500 (for HSEO6) points per
reciprocal atom, and the cut-off energy specified in the Methods section.
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Figure S6. Densities of states for different (near-)stable Cu-Ga-Se phases computed with different
functionals. All calculations were done for the PBEsol-optimized geometries. No adjustment of the
band gaps was performed. In contrast to Fig. 3, all DOS presented here were computed using a
relatively loose k-point grid density of 3000 (for PBE, PBE+U, and mBJ) or 1500 (for HSEO6) points per
reciprocal atom, and the cut-off energy specified in the Methods section.
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Figure S7. Element-projected band structures of (near-)stable Cu-In-Se structures computed using the
PBE functional. The insets illustrate the Brillouin zones. All calculations were done for the PBEsol-

optimized geometries. No adjustment of band gaps was performed.
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Figure S8. Element-projected band structures of (near-)stable Cu-Ga-Se structures computed using
the PBE functional. The insets illustrate the Brillouin zones. All calculations were done for the PBEsol-
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Figure S11. Element-projected band structures of (near-)stable Cu-In-Se structures computed using
the mBlJ functional. The insets illustrate the Brillouin zones. All calculations were done for the PBEsol-

optimized geometries. No adjustment of band gaps was performed.
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Figure S12. Element-projected band structures of (near-)stable Cu-Ga-Se structures computed using
the mBlJ functional. The insets illustrate the Brillouin zones. All calculations were done for the PBEsol-
optimized geometries. No adjustment of band gaps was performed.
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Figure S17. Comparison of band structures calculated using the PBE+U functional with and without
spin-orbit coupling (SOC) for four selected (near-)stable Cu-In-Se structures. All calculations were
performed for the PBEsol-optimized geometries. For the calculations with SOC, the band energies
were rigidly shifted upward by up to 0.1 eV to align the dispersion curves across the Brillouin zone for
ease of comparison. No band gap correction was applied.
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Figure S20. Element-projected band structures of the nine literature CulnsSeg polytypes (see Table S1)
and chalcopyrite CulnSe,, calculated using the PBE+U functional. All calculations were performed
using the PBEsol-optimized geometries. The calculations employed the same unit cell geometry (aside
from minor structural relaxations) and, consequently, the same Brillouin zone geometry, as
illustrated for the “Type-D” polytype in the bottom row. The insets show the Fermi surfaces
calculated at the valence band edge (i.e., 26 meV below VBM). No band gap correction was applied.
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Figure S21. Element-projected band structures of the nine literature CuGasSeg polytypes (see Table
S1) and chalcopyrite CuGaSe,, calculated using the PBE+U functional. All calculations were performed
using the PBEsol-optimized geometries. The calculations employed the same unit cell geometry (aside
from minor structural relaxations) and, consequently, the same Brillouin zone geometry, as
illustrated for the “Type-D” polytype in the bottom row. The insets show the Fermi surfaces
calculated at the valence band edge (i.e., 26 meV below VBM). No band gap correction was applied.
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Figure S23. Fermi surfaces in the Brillouin zones of the (near-)stable structures in the Cu-In-Se system
obtained with the PBE+U functional for energies 26 meV below VBM and 130 meV above CBM. All
calculations were done for the PBEsol-optimized geometries. The Brillouin zones are shown with
differing scales across the structures.
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Figure S24. Fermi surfaces in the Brillouin zones of the (near-)stable structures in the Cu-Ga-Se
system obtained with the PBE+U functional for energies 26 meV below VBM and 130 meV above
CBM. All calculations were done for the PBEsol-optimized geometries. The Brillouin zones are shown
with differing scales across the structures.



33

CuiolnipSess

R

A A
T4
N 'Xl?;j

\ @ - VBM-0.026 eV ®» -CBM+0.13 eV

Figure S25. Fermi surfaces in the Brillouin zones of the (near-)stable structures in the Cu-In-Se system
obtained with the mBJ functional for energies 26 meV below VBM and 130 meV above CBM. All
calculations were done for the PBEsol-optimized geometries. The Brillouin zones are shown with
differing scales across the structures.
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Figure S26. Fermi surfaces in the Brillouin zones of the (near-)stable structures in the Cu-Ga-Se
system obtained with the mBJ functional for energies 26 meV below VBM and 130 meV above CBM.
All calculations were done for the PBEsol-optimized geometries. The Brillouin zones are shown with

differing scales across the structures.
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