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Supporting information

Data collection

A dataset has been constructed to predict the specific energy of Mg-air batteries,
utilizing sample data derived from experimental studies published in relevant literature since
2010. These publications are sourced from reputable academic journals in the fields of
materials science and electrochemistry. The majority of these resources are accessible via
subscription-based platforms, such as Elsevier, American Chemical Society, Springer, and
Royal Society of Chemistry, offering a wide array of high-quality research articles. The data
collection focuses on capturing information on alloy composition, heat treatment processes
(e.g., homogenization, hot extrusion, hot rolling), cathode materials and battery performance.
This effort results in the compilation of 1,235 data points on Mg-air batteries.

Subsequently, data cleansing is performed. Initially, 103 entries with missing values are
eliminated. In addition, while the diversity of alloy types and the intricate composition of
alloying elements contribute to an expanded information space for sample analysis, this
complexity also complicates the optimization of alloy compositions and the overall
improvement of their properties. To simplify the dataset, an additional 92 samples of

complex five-element and six-element alloys are excluded.

Addressing bias and noise in the dataset
Variability inherent to diverse data sources and experimental parameters poses

challenges, potentially introducing biases and noise that can compromise predictive model
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performance. To systematically address these issues, the following strategies were rigorously
implemented:

Rigorous data source selection: A stringent data source selection protocol was
implemented, exclusively incorporating data points derived from peer-reviewed experimental
studies published post-2010 in high-impact academic journals. This criterion established a
fundamental level of data reliability and adherence to established methodological standards.
Further prioritization was accorded to studies characterized by comprehensive experimental
descriptions, complete datasets, and a demonstrably higher citation frequency, indicative of
their broad influence within the scientific community.

Feature engineering of key experimental conditions: Key experimental parameters, such
as alloy composition, heat treatment protocols, and cathode material classifications, were
systematically extracted and engineered into distinctive features for the machine learning
(ML) model. This approach enabled the model to explicitly learn the influence of these
variables on battery performance, thereby effectively accounting for and reducing inherent
biases stemming from varied experimental methodologies.

Data standardization: To minimize inter-study variability and mitigate inherent biases,
experimental conditions and reported parameters were rigorously standardized. This involved
normalization based on widely accepted metrics, including metal composition ratios, current
density processing methods, and categorical classifications of cathode catalysts, ensuring
comparability across disparate datasets.

Cross-validation: K-fold cross-validation was systematically employed to rigorously

assess the generalization capability and robustness of the ML model, concurrently identifying
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potential latent biases or noise within the dataset. This involved systematically partitioning
the dataset into distinct training and validation subsets, facilitating iterative model evaluation

across diverse data permutations.

Addressing duplicate or conflicting data

In instances where disparate performance data were reported for ostensibly identical
materials within the literature, the primary principle guiding our approach was to
meticulously investigate whether these discrepancies originated from variations in
experimental conditions (e.g., distinct testing temperatures, current densities, electrolyte
compositions, or specific processing protocols). Following careful review, if data for the
same material under purportedly identical experimental conditions nevertheless exhibited
variations, these discrepancies were generally indicative of potential measurement errors,
batch-to-batch variations in sample preparation, or reporting inconsistencies within the
literature. In such scenarios, the subsequent hierarchical approaches were employed:

Prioritization: Prioritization was accorded to data sourced from higher-impact,
authoritative journals, or datasets demonstrably widely cited by subsequent research,
reflecting their greater reliability and scientific consensus.

Statistical averaging/median: Where multiple reliable but marginally divergent data
points existed, their average or median value was considered for inclusion. The median, in
particular, was favored for its enhanced robustness against potential outliers.

Conservative estimation: In specific scenarios, to bolster model robustness and prevent

overly optimistic predictions, a more conservative estimate was adopted. For instance, if the
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optimization objective was specific energy, a lower reported value might be selected.
Outlier analysis: Data points exhibiting significant deviations were subjected to rigorous
outlier analysis. This process, critically informed by domain-specific expertise, guided

decisions regarding their correction, removal, or further meticulous scrutiny.

Addressing data heterogeneity challenges

The collection of training data from heterogeneous literature sources inherently poses
challenges to data uniformity, due to potential variations in experimental details across
research groups and the limited ability of selected features to fully capture such variance. To
meticulously address these issues and ensure robust model training, a multi-layered strategy
was employed.

Initially, data acquisition prioritized high-impact and authoritative journals, or those
extensively cited in subsequent literature. This established a foundation of reliability and
helped mitigate inconsistencies arising from less rigorously reported studies. Furthermore,
once it was confirmed that observed data discrepancies were not attributable to identifiable
variations in experimental conditions (e.g., measurement error, batch-to-batch variability, or
reporting inconsistencies), a nuanced approach to data treatment was adopted.

In instances of slight numerical discrepancies among multiple reliable data points, the
median was preferred over the mean owing to its greater robustness against potential outliers,
which might stem from subtle, unaccounted-for experimental differences. For energy density,
conservative estimates were additionally employed to mitigate the risk of overly optimistic

model predictions in the presence of inherent data scatter.
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Concurrently, a rigorous outlier analysis was conducted on data points exhibiting
significant deviations. Guided by domain expertise, decisions were made regarding their
correction, removal, or further investigation, thereby directly addressing potential anomalies
stemming from diverse experimental protocols. Ultimately, to further optimize the dataset,
minimize intrinsic noise, and enhance the model's generalizability to core material systems, a
select number of complex multi-element alloy samples—often associated with higher
inherent variability and more challenging experimental standardization—were systematically

excluded.

Detailed data cleaning process

The data cleaning process comprised the following sequential steps:

Missing value handling: Upon initial compilation, a systematic assessment for missing
values was performed. A total of 103 entries were identified as lacking target values. To
uphold data quality and facilitate effective model training, these entries were systematically
excluded from the dataset.

Exclusion of complex alloy samples: To streamline the dataset representation and enable
the ML model to more accurately capture the performance patterns of fundamental alloy
systems, highly complex five-element and six-element alloy samples were systematically
excluded. This accounted for 92 multi-element entries. Their removal was justified by their
inherent compositional complexity, which typically leads to performance characteristics
significantly divergent from more prevalent binary, ternary, or quaternary alloys.

Furthermore, as they constituted a minor fraction of the overall dataset, their exclusion aimed
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to optimize the model's generalization capability and enhance interpretability.
Data Standardization: Throughout the entire data cleaning process, meticulous attention
was paid to ensuring the consistency of all numerical data units and standardizing data

formats, thereby optimizing the dataset for subsequent ML model processing.

Exclusion of higher-order Mg alloys

This work intentionally excluded higher-order Mg alloys (quinary and above) from the
initial dataset primarily due to insufficient statistical representativeness. The scarcity of data
points for these systems would introduce noise, risk overfitting, and degrade the robustness
and generalization ability of ML models. Moreover, higher-order alloys often exhibit distinct
strengthening mechanisms and microstructural evolutions (e.g., high-entropy effects)
compared to lower-order systems. Mixing fundamentally different metallurgical systems
without adequate data could lead to misleading correlations and hinder accurate model
training.

This study focuses on establishing a robust, interpretable ML methodology for screening
new Mg anode materials using simpler alloy systems (binary, ternary, quaternary). This
strategic exclusion ensures foundational reliability, allowing to rigorously validate the
approach and lay a solid basis for future methodological extensions to more complex
compositional spaces.

While higher-order Mg alloys represent a promising frontier, their data scarcity is a
current challenge. We propose an iterative methodology: combining high-throughput

theoretical screening (e.g., DFT, CALPHAD) to generate virtual datasets, followed by
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targeted experimental verification. This experimental feedback will continuously calibrate
and optimize the model, forming a closed-loop of prediction and refinement. Future work
will integrate deep learning and multi-scale data fusion to accelerate the discovery and

application of these advanced alloys.

Feature preparation
The alloy composition and experimental testing conditions are recognized as critical
parameters influencing the specific energy of Mg-air batteries. Features that describe the

electronic and physical properties of Mg alloys are utilized, enabling a more comprehensive
understanding of their characteristics. Importantly, these features can be quantified without
the need for intricate and time-consuming quantum chemical calculations, thereby ensuring
more accessible and practical. The types of features employed in this study are detailed in
Tables S1 and S2. As shown in Table S1, the electronic and physical properties of these
alloys are categorized into 36 distinct classes, with each class yielding 3 distinct features
derived from Formulas (1)-(3), where a,represents the molar ratios of the ith constituent
elements of Mg alloys, x, represents the property of the ith element, x denotes the mean value
of property, o, signifies the difference of property between the specific element in alloys and

mean value of alloys, x,, represents the property of pure Mg, and J,,, indicates the

Mg

difference of property between the specific element in alloys and Mg element.

For category i, Formula (1) computes the average electronic or physical properties (;)
by summing values of i property (x,) according to the molar ratios (a;) of the constituent

n

elements in Mg alloys, resulting in feature "im". For instance, Eea represents electron
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affinity; thus, the average electron affinity of the alloy is calculated using Formula (1) and is
designated as feature "Eea.m". Similarly, Formula (2) is employed to evaluate the variations
in electronic and physical properties among the elements in magnesium alloys, referred to as

Hl‘H

feature "i". Furthermore, Formula (3) assesses the performance quality differences between

the doped elements and magnesium within the alloys, designated as feature "i.Mg".

Feature im: X = Z ax; (1)

2
Feature i: 0, = \/Z ai(] - i) ()
X

2
Feature i.Mg: Oirg = z a{] - LJ 3)
x

Mg

Note that Eea is calculated exclusively using Formula 1 and Formula 2, whereas Smis,
mixing entropy, is calculated solely with Formula 1. As a result, 105 features are generated to
describe the electronic and physical properties of alloys. The mole fraction of 27 elements
(listed in Table S2) is taken into account as features. Furthermore, features representing six
different thermal treatment processes were incorporated, which significantly influences the
microstructure and macroscopic properties of the alloys. The type of cathode catalyst is also
included, given its pivotal role in the oxygen reduction reaction within the battery. For these
parameters, one-hot encoding was applied to properly represent their distinct nominal
categories. The current density and discharge time, critical experimental parameters, are
included as well, as they are closely related to the power output and energy density of the
battery. In summary, we have assembled a comprehensive set of 144 features. These features

provide ML model with a holistic perspective to understand and predict the performance of



173 different alloys when they are used as anodes in Mg-air batteries.

174 Table S1 The list of physical features for predicting specific energy.

Physical properties®
Abb. Description Abb. Description
XP Pauling electronegativities D Averaged density
I1 First ionization energies Dl Averaged density in liquid
12 Second 1onization energies Tm Averaged melting temper‘ature
calculated by the rule of mixtures
I3 Third ionization energies K Averaged thermal conductivity
AW Atomic weight R Averaged resistivity
VEC Valence electrons C Averaged electrical conductivity
Al Resulting first lattice con§tant Hf Heat of fusion
calculated by the rule of mixtures
Resulting second lattice constant . )
A2 calculate%i by the rule of mixtures Cs Specific heat capacity
A3 Resulting third lattice cogstant Cm Molar heat capacity
calculated by the rule of mixtures
Rm Atomic radii Smis Mixing entropy
Re Covalent radii Hl Mohs hardness
Eea Electron affinity H2 Brinell hardness
MV Molar Volume M1 Bulk modulus
AN Atomic number M2 Shear modulus
SEN The number of electrons in the M3 Young modulus
second outermost shell
PR Poisson ratio MS3 Volume magnetic susceptibility
MSI Mass magnetic susceptibility S Standard entropy
MS2 Molar magnetic susceptibility H Standard enthalpy

175 ¥The element parameters come from http://www.periodictable.com.

176 Table S2 The list of experimental features for predicting specific energy.

Experimental parameters Experimental parameters

Abb. Description Abb. Description
Mg/% The molar fraction of Mg Ag/% The molar fraction of Ag
Al/% The molar fraction of Al Er/% The molar fraction of Er
Zn/% The molar fraction of Zn Ge/% The molar fraction of Ge
Y/% The molar fraction of Y Cd/% The molar fraction of Cd
7x/% The molar fraction of Zr Cu/% The molar fraction of Cu
Sm/% The molar fraction of Sm Pr/% The molar fraction of Pr
Mn/% The molar fraction of Mn Th/% The molar fraction of Th
Gd/% The molar fraction of Gd P1 Homogenization

Ca/% The molar fraction of Ca P2 Hot extrusion



In/% The molar fraction of In P3 Hot rolling

Bi/% The molar fraction of Bi P4 Quenching

Li/% The molar fraction of Li P5 As-cast

Sn/% The molar fraction of Sn P6 Solution

Ce/% The molar fraction of Ce MA Current density

Ga/% The molar fraction of Ga Num  The number of elements in alloys
Si1/% The molar fraction of Si CT Discharge time

Ba/% The molar fraction of Ba Cat.Pt Pt electrode

Nd/% The molar fraction of Nd Cat.Mn MnO,

Pb/% The molar fraction of Pb Cat.Ag Ag electrode

La/% The molar fraction of La

177

178 SHAP analysis

179 Shapley Additive Explanations (SHAP) is a model interpretation method based on

180 Shapley values from game theory. A key feature of the SHAP model is its additivity, which

181 means that the model output can be expressed as the sum of each feature contributions.
M
182 Formally, given an input x, SHAP model can be represented as follows: f(x) = @, + Z 0}
i=1

183 (4), where f{x) is the model output, @, denotes the baseline value (e.g., the average

184 prediction of the model) and @, represents the SHAP value for the ith feature.

185 Table S3 The prediction accuracy of XGB models after screening features by RFE-Lasso.

R? MAE
Features

Train Val Test Train Val Test
144 features 0.96 0.81 0.51 48 141 146
100 features 0.97 0.71 0.56 41 155 144
90 features 0.97 0.77 0.76 36 149 114
80 features 0.97 0.79 0.42 39 146 183
70 features 0.97 0.78 0.61 39 146 142
60 features 0.98 0.79 0.81 35 137 93
50 features 0.98 0.79 0.82 20 134 106
40 features 0.97 0.75 0.79 43 157 120
39 features 0.97 0.78 0.68 36 120 146
38 features 0.97 0.81 0.63 27 130 131
37 features 0.97 0.81 0.78 22 120 119
36 features 0.97 0.75 0.76 21 154 117

10
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35 features

0.97

0.74

0.72 26

158 131

187 Table S4 The parameter settings of models after screening features by RFE-Lasso.

Feature
number

Data
partitioning

RFE-Lasso

XGB

144 features

100 features

90 features

80 features

70 features

60 features

50 features

40 features

39 features

38 features

37 features

36 features

35 features

test size=0.15,
random_state =3

test size=0.15,
random_state=1

test size=0.15,
random_state=5

test size=0.15,
random_state=5

test size=0.15,
random_state=5

test size=0.15,
random_state=5

test size=0.15,
random_state=5

test size=0.15,
random_state=5

test size=0.15,
random_state=0

test size=0.15,
random_state=2

test size=0.15,
random_state=0

test size=0.15,
random_state=5

test _size=0.15,
random_state=5

Lasso(alpha=1),
RFE(estimator=lasso,

n_features to select=100, step=1)

Lasso(alpha=1),
RFE(estimator=lasso,

n_features to_select=90, step=1)

Lasso(alpha=1),
RFE(estimator=lasso,

n_features to_select=80, step=1)

Lasso(alpha=1),
RFE(estimator=lasso,

n_features to_select=70, step=1)

Lasso(alpha=1),
RFE(estimator=lasso,

n_features to_select=60, step=1)

Lasso(alpha=1),
RFE(estimator=lasso,

n_features to_select=50, step=1)

Lasso(alpha=1),
RFE(estimator=lasso,

n_features to_select=40, step=1)

Lasso(alpha=1),
RFE(estimator=lasso,

n_features to_select=39, step=1)

Lasso(alpha=1),
RFE(estimator=lasso,

n_features to_select=38, step=1)

Lasso(alpha=1),
RFE(estimator=lasso,

n_features to_select=37, step=1)

Lasso(alpha=1),
RFE(estimator=lasso,

n_features to_select=36, step=1)

Lasso(alpha=1),
RFE(estimator=lasso,

random_state=0,
n_estimators=31,
max_depth =7
random_state=0,
n_estimators=31,
max_depth =8
random_state=0,
n_estimators=31,
max_depth =8
random_state=0,
n_estimators=31,
max_depth =8
random_state=0,
n_estimators=31,
max_depth =8
random_state=0,
n_estimators=31,
max_depth =8
random_state=0,
n_estimators=71,
max_depth =8
random_state=0,
n_estimators=31,
max_depth =8
random_state=0,
n_estimators=31,
max_depth =8
random_state=0,
n_estimators=61,
max_depth =8
random_state=0,
n_estimators=61,
max_depth =9
random_state=0,
n_estimators=91,
max_depth =8
random_state=0,
n_estimators=61,

11



n_features to select=35, step=1) max_depth =8
188
189 Table S5 The detailed meanings of the 37 features selected by RFE-Lasso.
Order Feature Definition ) Feature
name importance
1 Al/% The molar fraction of Al 13.3
2 Zn/% The molar fraction of Zn 7.0
3 Y/% The molar fraction of Y 0.8
4 Z1/% The molar fraction of Zr 0.1
5 Sm/% The molar fraction of Sm 1.2
6 Mn/% The molar fraction of Mn 2.6
7 Gd/% The molar fraction of Gd 0.3
8 Ca/% The molar fraction of Ca 7.4
9 In/% The molar fraction of In 1.0
10 Ce/% The molar fraction of Ce 1.2
11 Ba/% The molar fraction of Ba 0.1
12 Pb/% The molar fraction of Pb 0.0
13 Et/% The molar fraction of Er 0.4
14 Cd/% The molar fraction of Cd 0.2
15 VEC Valence electron deviation 213
16 D Averaged density deviation 30.0
17 A2 Second lattice constant deviation 7.4
18 Cm Molar heat capacity deviation 11.0
19 Eea Electron affinity deviation 76.4
20 Hl.m Averaged mohs hardness 20.3
21 H2 Brinell hardness deviation 28.4
22 M2.Mg Difference in shear modulus of alloy with pure Mg 25.7
23 PR Poisson ratio deviation 10.8
24 MSI1 Mass magnetic susceptibility deviation 9.8
25 MS2 Molar magnetic susceptibility deviation 13.1
%6 SEN.m The averaged number of electrons in the second 16.0
outermost shell

27 S.Mg Standard entropy deviation 8.6
28 P1 Homogenization 4.1
29 P2 Hot extrusion 1.6
30 P3 Hot rolling 3.0
31 P4 Quenching 5.9
32 P5 As-cast 383
33 MA Current density 116.3
34 Cat.Pt Pt electrode 5.1
35 Cat.Mn MnO, 8.1
36 Cat.Ag Ag electrode 0.0

12
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37 Num The number of elements in alloys 6.0

Specific energy
Al/OA, 1.00

Sm/% ~ 0.75
Ce/% ~ 0.50
VEC ~ 0.25
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Cat.Mn o -0.75
Cat.Ag
Num

Features

Fig. S1. The heatmap of correlation coefficients (Ci,j) between every two features calculated

via the Pearson method.

Performance comparison of models

To rigorously validate the effectiveness of the RFE-Lasso method in feature selection,
its performance was comparatively assessed against RFE-XGB and Lasso, with the number
of retained features consistently fixed at 37. As depicted in Fig. S2a, RFE-Lasso exhibited
markedly superior feature selection capabilities, achieving a Test dataset R? of 0.78. This
performance significantly surpassed RFE-XGB (R? = 0.51) and Lasso (R? = 0.63), primarily

due to its synergistic integration of the advantages inherent to both RFE and Lasso. Notably,

13
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this method proved particularly efficacious for predicting Mg alloys containing elements not
present in the original training dataset.

Subsequently, a comparative analysis was undertaken to evaluate the applicability and
predictive performance of five prevalent ML algorithms—XGBoost (XGB), Random Forest
(RF), Gradient Boosting Regression (GBR), Support Vector Machine (SVM), and Multilayer
Perceptron (MLP)—on the Mg-air battery dataset. The parameter settings of these models are
presented in Tables S6. As illustrated in Fig. S2b, XGBoost consistently emerged as the
highest-performing algorithm, yielding the most robust R? values on the Val set (0.81), the
Test set (0.78), and across 10-fold cross-validation (average R? = 0.76). In stark contrast,
while RF performed reasonably well on the Val set and during cross-validation, its Test
dataset R? declined significantly to 0.58, indicating a suboptimal capacity for generalization
beyond the training data. Furthermore, GBR, SVM, and MLP consistently demonstrated
lower predictive performance across both the initial and Test datasets. These findings
unequivocally establish XGB as the most reliable and effective model for predicting battery
properties within this study, offering superior robustness and generalization capabilities

compared to the other evaluated algorithms.

(a) Model performance (b) Model performance
‘ B Train Val Test‘
Lol 097 0.98 Hoe 0.58 0.60 029 021 |Test
0.81 0.80
& L 0.78 0.78 -
% 08 & 0.79 . 054 053 |val
0.63
0.6}
0.51 FCV
0.4 T T T =
RFE-Lasso  RFE-XGB Lasso XGB RF GBR SVM MLP
Different selection methods Different algorithms

Fig. S2 Performance comparison of models: (a) models employing three distinct feature

14
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selection methods; (b) models utilizing different algorithms.
Table S6 The parameter settings for different algorithms.
Algorithms Parameters
XGB random_state = 0, n_estimators = 61, max_depth =9
RF n_estimators = 31, max_depth = 19, bootstrap = True, random_state = 47
GBR learning_rate = 0.28, random_state =47, n_estimators = 60
SVM Kernel = 'rbf', C = 1300.0, epsilon = 1e-05, gamma = 0.02
MLP max_iter=80, hidden layer sizes = [64, 64], alpha = 0.58, activation = 'relu’,

solver = 'lbfgs', random_state = 30

Detailed calculation of "main SHAP values'"

To precisely quantify the individual contribution of each feature to the model's
prediction, "Main SHAP values" were derived using the SHAP interaction module. This
approach is efficient for distinguishing the independent impact of a feature from its
synergistic or antagonistic interactions with other features, thereby enhancing the
interpretability of ML model.

The SHAP interaction module specifically computes a square interaction matrix for each
datapoint, where off-diagonal elements (SHAP;;) represent the interaction effect between
feature i and feature j. A positive SHAP;; indicates a synergistic effect, implying that the joint
presence of features i and j enhances the target prediction. Conversely, a negative value
signifies an antagonistic effect, where their combined influence diminishes the target
prediction.

The "Main SHAP values" are specifically defined by the diagonal elements of this
matrix, SHAP;,. These self-interaction terms quantify the isolated, individual contribution of
feature i to the model's output. By design, SHAP;; reflects the unique marginal impact of
feature i, effectively filtering out the influence of other variables. Consequently, it represents

the pure, independent contribution of that single feature.

15
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Therefore, for each sample in the dataset and for all 37 features, the SHAP interaction
module was utilized to compute these interaction matrices. The "Main SHAP value" for any
given feature was then directly extracted from the corresponding diagonal element (SHAP; ;)
of the corresponding matrix. This methodology provides a direct and explicit measure of each
feature's independent predictive power across all samples, which is crucial for robust

scientific interpretation.
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Fig. S3. The scatter plot of full SHAP values before filtering out the interaction effects: (a)

MA; (b) P5; (c) D; (d) H2; (e) M2.Mg; (f) VEC; (g) SEN.m; (h) H1.m; (i) Al/%.
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251 Table S7 The threshhold value of screening conditions.

Abb. Descriptor Threshold value
A MA MA <30
B Eea Eea>13.5
C P5 P5=0
D D D<0.45
E H2 H2>0.02
F M2.Mg M2.Mg <0.14 or M2.Mg > 0.30
G VEC VEC <0.05 or VEC >0.13
H Hl.m Hl.m>2.51
B+D Eea, D Eea>13.5,D<0.45
B+F Eeca, M2.Mg Eea>13.5, M2.Mg <0.14 or M2.Mg > 0.30
B+G Eea, VEC Eea>13.5, VEC <0.05 or VEC >0.13
A+B+ MA, Eea,
MA <30, Eea>13.5, M2.Mg <0.14 or M2.Mg > 0.30
F M2.Mg
A+B+ MA, E
> o MA <30, Eea > 13.5, VEC < 0.05 or VEC > 0.13
G VEC
B+F+ Eea, M2.Mg, Eea>13.5 M2.Mg<0.14 or M2.Mg > 0.30, VEC <0.05 or VEC >
G VEC 0.13
A+B+ MA, Eea, MA <30, Eea>13.5, M2.Mg <0.14 or M2.Mg > 0.30, VEC <0.05
F+G M2Mg, VEC or VEC>0.13
A+B+ MA, Eea, P5,
MA <30, Eea>13.5, P5=0, M2.Mg <0.14 or M2.Mg > 0.30
C+F M2.Mg

252

253 Table S8 The screening conditions validated using the initial dataset comprising 1,024

254 samples for establishing the ML model.

True False
Abb. Descriptor pDo?r:js Good Bad pDo?r:js Good Bad
A MA 878 15.1% 84.9% 146 27%  97.3%
B Eea 283 247% 753% 741 9.0% 91.0%
C P5 480 17.1% 82.9% 544 10.1%  89.9%
D D 981 13.6% 86.4% 43 93%  90.7%
E H2 819 14.3% 85.7% 205 9.8%  90.2%
F M2.Mg 634 18.5% 81.5% 390 51%  94.9%

17



G VEC 589 17.7%  82.3% 435 7.6%  92.4%

H Hl.m 367 93% 90.7% 657 15.7% 84.3%

B+D Eea, D 276 254% 74.6% 748 9.0% 91.0%

B+F Eea, M2.Mg 223 309% 69.1% 801 85% 91.5%

B+G Eea, VEC 230 29.1% 70.9% 794 8.8% 91.2%

A+B+F MA, Eea, M2.Mg 196 35.2% 64.8% 828 82% 91.8%

A+B+G MA, Eea, VEC 199  33.7% 66.3% 825 85% 91.5%

B+F+G Eea, M2.Mg, VEC 196  33.7% 66.3% 828 8.6%  91.4%

A+B+F+G MA, Eea, M2.Mg, VEC 174  37.9% 62.1% 850 84% 91.6%

A+B+C+F MA, Eea, P5, M2.Mg 123 333% 66.7% 901 10.7% 89.3%

255

256 Features B (Eea) and F (M2.Mg) are top 2 effective screening conditions with larger

257 "Good" yields in "Ture" samples (Table S8). Feature A (MA) emerges as the most effective

258 to evaluate the "Bad" yield in "False" sample. Although these 8 screening conditions all

259 exhibit high "Bad" yields in "False" sample, their "Good" yields in "Ture" samples are

260 insufficient to reliably determine the potential anodes. Therefore, it is not reliable and

261 inadequate to identify the high-quality anodes on the threshold value achieved from a single

262 descriptor.

Screening results

True

Actual value

Bad FP
263

False

Good - FN

TN

264 Fig. S4. The confusion matrix of screening results.

TP + TN

TP +1IN + FP+ FN
TP

TP + FP
TP

TP + FN
2TP

] =
2TP + FN + FP

Accuracy =
Precision =

Recall =
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265

266 Table S9 The accuracy, presion, recall and F1-score of screening results in original dataset.

Abb. Description Accuracy Precision Recall Fl-score
A MA <30 26.9% 15.1% 97.1% 26.2%
B Eea>13.5 72.7% 24.7% 51.1% 33.3%
C P5=0 55.8% 17.1% 59.9% 26.6%
D D <0.45 16.8% 13.6% 97.1% 23.8%
E H2>0.02 29.5% 14.3% 85.4% 24.5%
F M2.Mg <0.14 or M2.Mg > 0.30 47.6% 18.5% 85.4% 30.4%
G VEC <£0.05 or VEC >0.13 49.4% 17.7% 75.9% 28.7%
H Hl.m >2.51 57.4% 9.3% 24.8% 13.5%
B+D 73.3% 25.4% 51.1% 33.9%
B+F 78.3% 30.9% 50.4% 38.3%
B+G 77.2% 29.1% 48.9% 36.5%
A+B+F 81.0% 35.2% 50.4% 41.4%
A+B+G 80.3% 33.7% 48.9% 39.9%
B+F+G 80.4% 33.7% 48.2% 39.6%
A+B+F+G 82.5% 37.9% 48.2% 42.4%
A+B+C+F 82.6% 33.3% 29.9% 31.5%
267
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Fig. SS5. Screening results and model predictions: (a) the accuracy, presion, recall and F1-
score of screening results in original dataset; (b) Eea and M2.Mg value of 12 data points
derived from literature data; (c) actual specific energy of 12 samples derived from literature

data.

Screening performance on ternary Mg-Sr-In alloys

Additionally, the effectiveness of these screening criteria is systematically evaluated by
four key metrics in machine learning classification: accuracy, precision, recall, and the F1-
score. Detailed methodologies for calculating accuracy, precision, recall, and the Fl-score,
are provided in Fig. S4, Equations (5) - (8), and detailed values are given in Table S9. The
definitions of the four metrics are as follows: TP (True Positive) denotes the number of
positive samples correctly predicted as positive; TN (True Negative) denotes the number of
negative samples correctly predicted as negative; FP (False Positive) denotes the number of
negative samples incorrectly predicted as positive; FN (False Negative) denotes the number
of positive samples incorrectly predicted as negative. Accuracy represents the proportion of
samples that are correctly predicted out of the total sample set. Precision indicates the ratio of
actual positives in the predicted positives. Recall denotes the proportion of actual positive
samples that are correctly identified as positive. The Fl-score is the harmonic mean of
precision and recall, balancing both metrics.

As illustrated in Fig. S5a, the accuracy for each combination is approximately 0.80,
demonstrating that precise screening can be accomplished with straightforward combinations
of several descriptors. Considering both the screening performance and concise, the

combination of B + F is selected as the screening condition. Furthermore, it has been verified
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293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

whether the B+F screening condition can be extended to Mg-Sr-In ternary alloys through
literature data. The Mg-0.5Sr-0.5In, Mg-0.5Sr-1.0In, and Mg-0.5Sr-2.0In alloys derived from
the literature meet the threshold values of the B+F condition (Fig. S5b), and thus they should
exhibit excellent battery performance. Indeed, as reported in the literature, the

aforementioned three alloys can achieve a specific energy of at least 1600 mWh g-! at current

densities not exceeding 40 mA cm2 (Fig. S5¢).
Table S10 ICP results for the chemical composition of the investigated alloys (wt.%).
Alloys Mg Sr
Mg-0.1Sr Bal. 0.09
Mg-0.5Sr Bal. 0.42
Mg-1Sr Bal. 1.01
Discharge performance

After discharge, specific energy of the Mg-air battery were calculated using the

following equations:

[1xU =4t
Specific energy ="*——— )
Vthal
Ixt
VVtheo = X. Xn (10)
FX i i
20

where W, (g) means the theoretical weight loss of anode, W, (g) means the actual weight
loss of anode before and after discharge; 7 (A) is applied current, # (h) is time of discharge; U
(V) represents the voltage of discharge; F' is Faraday constant (26.8 A h mol™!), x;, n;, and m;
represent the mass fraction, number of exchanged electrons, and atomic weight, respectively,

of each element in alloys.
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Full cell discharge test

The discharge performance of Mg alloys in 3.5 wt.% NaCl solution was measured in a
laboratory-assembled full cell. The exposed surface area of anode was approximately 1 x 1
cm?. The cathode was the commercial air cathode with MnO,/C as catalyst (2 x 2 cm?). The
cell voltage of Mg-air battery was tested at applied current densities of 1, 2.5, 5, and 10 mA
cm 2. During the discharge process, the electrolyte was stirred with the same rate. After the
full cell discharge test, the surface of Mg anode was cleaned by 200 g L' CrO; + 10 g L™!

AgNOs; solution to remove the discharge products and account for the weight loss.
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Fig. S6. Partial dependency plot of Eea feature.
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Partial dependence plot of "M2.Mg"
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Fig. S7. Partial dependency plot of M2.Mg feature.
The availability for high-throughput screening

The superior screening performance of the combined Eea and M2.Mg descriptors
(referred to as B + F in Table 1) is evident from their ability to correctly identify 30.9% of
high-performing samples (true positives) and accurately reject 91.5% of low-performing
samples (true negatives). This integrated descriptor approach thus serves as an efficient
screening condition for high-throughput materials discovery.

Crucially, Eea and M2.Mg are readily accessible for high-throughput screening and the
prediction of novel materials. Unlike approaches relying on computationally expensive
theoretical calculations (e.g., density functional theory, DFT), these descriptors are derived
from direct formulaic calculations. Such calculations only require fundamental physical
parameters of constituent elements, such as atomic radii and shear moduli, resulting in a
minimal computational cost.

This inherent low cost makes them highly suitable for the high-throughput screening of
numerous virtual materials. Specifically, our study demonstrates that when an alloy fails to

satisty the proposed criteria (i.e., Eea > 13.5 and (M2.Mg < 0.14 or M2.Mg > 0.3)), there is a
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91.5% probability that a magnesium-air battery utilizing it as an anode will exhibit a specific
energy below 1600 mWh g!'. This high negative predictive power establishes these
descriptors as potent tools for efficiently eliminating a significant portion of unqualified
candidate materials.

While alloys satisfying these conditions exhibit a 30.9% probability of exceeding 1600
mWh g'—a moderate success rate for proactively identifying high-energy density
materials—their exceptionally low computational burden nonetheless renders them ideal for
preliminary screening. They effectively function as a rapid first-pass filter, substantially
reducing the pool of materials that would otherwise necessitate more computationally
intensive and precise theoretical calculations, thereby significantly accelerating the overall

material discovery process.
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