

Supporting information

2

3 *Data collection*

4 A dataset has been constructed to predict the specific energy of Mg-air batteries,
5 utilizing sample data derived from experimental studies published in relevant literature since
6 2010. These publications are sourced from reputable academic journals in the fields of
7 materials science and electrochemistry. The majority of these resources are accessible via
8 subscription-based platforms, such as Elsevier, American Chemical Society, Springer, and
9 Royal Society of Chemistry, offering a wide array of high-quality research articles. The data
10 collection focuses on capturing information on alloy composition, heat treatment processes
11 (e.g., homogenization, hot extrusion, hot rolling), cathode materials and battery performance.

12 This effort results in the compilation of 1,235 data points on Mg-air batteries.

13 Subsequently, data cleansing is performed. Initially, 103 entries with missing values are
14 eliminated. In addition, while the diversity of alloy types and the intricate composition of
15 alloying elements contribute to an expanded information space for sample analysis, this
16 complexity also complicates the optimization of alloy compositions and the overall
17 improvement of their properties. To simplify the dataset, an additional 92 samples of
18 complex five-element and six-element alloys are excluded.

19

20 Addressing bias and noise in the dataset

21 Variability inherent to diverse data sources and experimental parameters poses
22 challenges, potentially introducing biases and noise that can compromise predictive model

23 performance. To systematically address these issues, the following strategies were rigorously
24 implemented:

25 *Rigorous data source selection:* A stringent data source selection protocol was
26 implemented, exclusively incorporating data points derived from peer-reviewed experimental
27 studies published post-2010 in high-impact academic journals. This criterion established a
28 fundamental level of data reliability and adherence to established methodological standards.
29 Further prioritization was accorded to studies characterized by comprehensive experimental
30 descriptions, complete datasets, and a demonstrably higher citation frequency, indicative of
31 their broad influence within the scientific community.

32 *Feature engineering of key experimental conditions:* Key experimental parameters, such
33 as alloy composition, heat treatment protocols, and cathode material classifications, were
34 systematically extracted and engineered into distinctive features for the machine learning
35 (ML) model. This approach enabled the model to explicitly learn the influence of these
36 variables on battery performance, thereby effectively accounting for and reducing inherent
37 biases stemming from varied experimental methodologies.

38 *Data standardization:* To minimize inter-study variability and mitigate inherent biases,
39 experimental conditions and reported parameters were rigorously standardized. This involved
40 normalization based on widely accepted metrics, including metal composition ratios, current
41 density processing methods, and categorical classifications of cathode catalysts, ensuring
42 comparability across disparate datasets.

43 *Cross-validation:* K-fold cross-validation was systematically employed to rigorously
44 assess the generalization capability and robustness of the ML model, concurrently identifying

45 potential latent biases or noise within the dataset. This involved systematically partitioning
46 the dataset into distinct training and validation subsets, facilitating iterative model evaluation
47 across diverse data permutations.

48

49 ***Addressing duplicate or conflicting data***

50 In instances where disparate performance data were reported for ostensibly identical
51 materials within the literature, the primary principle guiding our approach was to
52 meticulously investigate whether these discrepancies originated from variations in
53 experimental conditions (e.g., distinct testing temperatures, current densities, electrolyte
54 compositions, or specific processing protocols). Following careful review, if data for the
55 same material under purportedly identical experimental conditions nevertheless exhibited
56 variations, these discrepancies were generally indicative of potential measurement errors,
57 batch-to-batch variations in sample preparation, or reporting inconsistencies within the
58 literature. In such scenarios, the subsequent hierarchical approaches were employed:

59 *Prioritization:* Prioritization was accorded to data sourced from higher-impact,
60 authoritative journals, or datasets demonstrably widely cited by subsequent research,
61 reflecting their greater reliability and scientific consensus.

62 *Statistical averaging/median:* Where multiple reliable but marginally divergent data
63 points existed, their average or median value was considered for inclusion. The median, in
64 particular, was favored for its enhanced robustness against potential outliers.

65 *Conservative estimation:* In specific scenarios, to bolster model robustness and prevent
66 overly optimistic predictions, a more conservative estimate was adopted. For instance, if the

67 optimization objective was specific energy, a lower reported value might be selected.

68 *Outlier analysis:* Data points exhibiting significant deviations were subjected to rigorous
69 outlier analysis. This process, critically informed by domain-specific expertise, guided
70 decisions regarding their correction, removal, or further meticulous scrutiny.

71

72 ***Addressing data heterogeneity challenges***

73 The collection of training data from heterogeneous literature sources inherently poses
74 challenges to data uniformity, due to potential variations in experimental details across
75 research groups and the limited ability of selected features to fully capture such variance. To
76 meticulously address these issues and ensure robust model training, a multi-layered strategy
77 was employed.

78 Initially, data acquisition prioritized high-impact and authoritative journals, or those
79 extensively cited in subsequent literature. This established a foundation of reliability and
80 helped mitigate inconsistencies arising from less rigorously reported studies. Furthermore,
81 once it was confirmed that observed data discrepancies were not attributable to identifiable
82 variations in experimental conditions (e.g., measurement error, batch-to-batch variability, or
83 reporting inconsistencies), a nuanced approach to data treatment was adopted.

84 In instances of slight numerical discrepancies among multiple reliable data points, the
85 median was preferred over the mean owing to its greater robustness against potential outliers,
86 which might stem from subtle, unaccounted-for experimental differences. For energy density,
87 conservative estimates were additionally employed to mitigate the risk of overly optimistic
88 model predictions in the presence of inherent data scatter.

89 Concurrently, a rigorous outlier analysis was conducted on data points exhibiting
90 significant deviations. Guided by domain expertise, decisions were made regarding their
91 correction, removal, or further investigation, thereby directly addressing potential anomalies
92 stemming from diverse experimental protocols. Ultimately, to further optimize the dataset,
93 minimize intrinsic noise, and enhance the model's generalizability to core material systems, a
94 select number of complex multi-element alloy samples—often associated with higher
95 inherent variability and more challenging experimental standardization—were systematically
96 excluded.

97

98 ***Detailed data cleaning process***

99 The data cleaning process comprised the following sequential steps:

100 *Missing value handling*: Upon initial compilation, a systematic assessment for missing
101 values was performed. A total of 103 entries were identified as lacking target values. To
102 uphold data quality and facilitate effective model training, these entries were systematically
103 excluded from the dataset.

104 *Exclusion of complex alloy samples*: To streamline the dataset representation and enable
105 the ML model to more accurately capture the performance patterns of fundamental alloy
106 systems, highly complex five-element and six-element alloy samples were systematically
107 excluded. This accounted for 92 multi-element entries. Their removal was justified by their
108 inherent compositional complexity, which typically leads to performance characteristics
109 significantly divergent from more prevalent binary, ternary, or quaternary alloys.
110 Furthermore, as they constituted a minor fraction of the overall dataset, their exclusion aimed

111 to optimize the model's generalization capability and enhance interpretability.

112 *Data Standardization:* Throughout the entire data cleaning process, meticulous attention
113 was paid to ensuring the consistency of all numerical data units and standardizing data
114 formats, thereby optimizing the dataset for subsequent ML model processing.

115

116 ***Exclusion of higher-order Mg alloys***

117 This work intentionally excluded higher-order Mg alloys (quinary and above) from the
118 initial dataset primarily due to insufficient statistical representativeness. The scarcity of data
119 points for these systems would introduce noise, risk overfitting, and degrade the robustness
120 and generalization ability of ML models. Moreover, higher-order alloys often exhibit distinct
121 strengthening mechanisms and microstructural evolutions (e.g., high-entropy effects)
122 compared to lower-order systems. Mixing fundamentally different metallurgical systems
123 without adequate data could lead to misleading correlations and hinder accurate model
124 training.

125 This study focuses on establishing a robust, interpretable ML methodology for screening
126 new Mg anode materials using simpler alloy systems (binary, ternary, quaternary). This
127 strategic exclusion ensures foundational reliability, allowing to rigorously validate the
128 approach and lay a solid basis for future methodological extensions to more complex
129 compositional spaces.

130 While higher-order Mg alloys represent a promising frontier, their data scarcity is a
131 current challenge. We propose an iterative methodology: combining high-throughput
132 theoretical screening (e.g., DFT, CALPHAD) to generate virtual datasets, followed by

133 targeted experimental verification. This experimental feedback will continuously calibrate
134 and optimize the model, forming a closed-loop of prediction and refinement. Future work
135 will integrate deep learning and multi-scale data fusion to accelerate the discovery and
136 application of these advanced alloys.

137

138 ***Feature preparation***

139 The alloy composition and experimental testing conditions are recognized as critical
140 parameters influencing the specific energy of Mg-air batteries. Features that describe the
141 electronic and physical properties of Mg alloys are utilized, enabling a more comprehensive
142 understanding of their characteristics. Importantly, these features can be quantified without
143 the need for intricate and time-consuming quantum chemical calculations, thereby ensuring
144 more accessible and practical. The types of features employed in this study are detailed in
145 **Tables S1 and S2**. As shown in **Table S1**, the electronic and physical properties of these
146 alloys are categorized into 36 distinct classes, with each class yielding 3 distinct features
147 derived from Formulas (1)-(3), where a_i represents the molar ratios of the i th constituent
148 elements of Mg alloys, x_i represents the property of the i th element, \bar{x} denotes the mean value
149 of property, δ_x signifies the difference of property between the specific element in alloys and
150 mean value of alloys, x_{Mg} represents the property of pure Mg, and $\delta_{x,Mg}$ indicates the
151 difference of property between the specific element in alloys and Mg element.

152 For category i , Formula (1) computes the average electronic or physical properties (\bar{x})
153 by summing values of i property (x_i) according to the molar ratios (a_i) of the constituent
154 elements in Mg alloys, resulting in feature " $i.m$ ". For instance, Eea represents electron

155 affinity; thus, the average electron affinity of the alloy is calculated using Formula (1) and is
 156 designated as feature "*Eea.m*". Similarly, Formula (2) is employed to evaluate the variations
 157 in electronic and physical properties among the elements in magnesium alloys, referred to as
 158 feature "*i*". Furthermore, Formula (3) assesses the performance quality differences between
 159 the doped elements and magnesium within the alloys, designated as feature "*i.Mg*".

160 Feature *i.m* :
$$\bar{x} = \sum a_i x_i \quad (1)$$

Feature *i* :
$$\delta_x = \sqrt{\sum a_i \left(1 - \frac{x_i}{\bar{x}} \right)^2} \quad (2)$$

Feature *i.Mg* :
$$\delta_{x,Mg} = \sqrt{\sum a_i \left(1 - \frac{x_i}{x_{Mg}} \right)^2} \quad (3)$$

161

162 Note that *Eea* is calculated exclusively using Formula 1 and Formula 2, whereas *Smis*,
 163 mixing entropy, is calculated solely with Formula 1. As a result, 105 features are generated to
 164 describe the electronic and physical properties of alloys. The mole fraction of 27 elements
 165 (listed in **Table S2**) is taken into account as features. Furthermore, features representing six
 166 different thermal treatment processes were incorporated, which significantly influences the
 167 microstructure and macroscopic properties of the alloys. The type of cathode catalyst is also
 168 included, given its pivotal role in the oxygen reduction reaction within the battery. For these
 169 parameters, one-hot encoding was applied to properly represent their distinct nominal
 170 categories. The current density and discharge time, critical experimental parameters, are
 171 included as well, as they are closely related to the power output and energy density of the
 172 battery. In summary, we have assembled a comprehensive set of 144 features. These features
 provide ML model with a holistic perspective to understand and predict the performance of

173 different alloys when they are used as anodes in Mg-air batteries.

174 **Table S1** The list of physical features for predicting specific energy.

Physical properties ^{a)}			
Abb.	Description	Abb.	Description
XP	Pauling electronegativities	D	Averaged density
I1	First ionization energies	Dl	Averaged density in liquid
I2	Second ionization energies	Tm	Averaged melting temperature calculated by the rule of mixtures
I3	Third ionization energies	K	Averaged thermal conductivity
AW	Atomic weight	R	Averaged resistivity
VEC	Valence electrons	C	Averaged electrical conductivity
A1	Resulting first lattice constant calculated by the rule of mixtures	Hf	Heat of fusion
A2	Resulting second lattice constant calculated by the rule of mixtures	Cs	Specific heat capacity
A3	Resulting third lattice constant calculated by the rule of mixtures	Cm	Molar heat capacity
Rm	Atomic radii	Smis	Mixing entropy
Rc	Covalent radii	H1	Mohs hardness
Eea	Electron affinity	H2	Brinell hardness
MV	Molar Volume	M1	Bulk modulus
AN	Atomic number	M2	Shear modulus
SEN	The number of electrons in the second outermost shell	M3	Young modulus
PR	Poisson ratio	MS3	Volume magnetic susceptibility
MS1	Mass magnetic susceptibility	S	Standard entropy
MS2	Molar magnetic susceptibility	H	Standard enthalpy

175 ^{a)}The element parameters come from <http://www.periodictable.com>.

176 **Table S2** The list of experimental features for predicting specific energy.

Experimental parameters		Experimental parameters	
Abb.	Description	Abb.	Description
Mg/%	The molar fraction of Mg	Ag/%	The molar fraction of Ag
Al/%	The molar fraction of Al	Er/%	The molar fraction of Er
Zn/%	The molar fraction of Zn	Ge/%	The molar fraction of Ge
Y/%	The molar fraction of Y	Cd/%	The molar fraction of Cd
Zr/%	The molar fraction of Zr	Cu/%	The molar fraction of Cu
Sm/%	The molar fraction of Sm	Pr/%	The molar fraction of Pr
Mn/%	The molar fraction of Mn	Th/%	The molar fraction of Th
Gd/%	The molar fraction of Gd	P1	Homogenization
Ca/%	The molar fraction of Ca	P2	Hot extrusion

In/%	The molar fraction of In	P3	Hot rolling
Bi/%	The molar fraction of Bi	P4	Quenching
Li/%	The molar fraction of Li	P5	As-cast
Sn/%	The molar fraction of Sn	P6	Solution
Ce/%	The molar fraction of Ce	MA	Current density
Ga/%	The molar fraction of Ga	Num	The number of elements in alloys
Si/%	The molar fraction of Si	CT	Discharge time
Ba/%	The molar fraction of Ba	Cat.Pt	Pt electrode
Nd/%	The molar fraction of Nd	Cat.Mn	MnO ₂
Pb/%	The molar fraction of Pb	Cat.Ag	Ag electrode
La/%	The molar fraction of La		

177

178 **SHAP analysis**

179 Shapley Additive Explanations (SHAP) is a model interpretation method based on
 180 Shapley values from game theory. A key feature of the SHAP model is its additivity, which
 181 means that the model output can be expressed as the sum of each feature contributions.

182 Formally, given an input x , SHAP model can be represented as follows: $f(x) = \phi_0 + \sum_{i=1}^M \phi_i$

183 (4), where $f(x)$ is the model output, ϕ_0 denotes the baseline value (e.g., the average
 184 prediction of the model) and ϕ_i represents the SHAP value for the i th feature.

185 **Table S3** The prediction accuracy of XGB models after screening features by RFE-Lasso.

Features	R ²			MAE		
	Train	Val	Test	Train	Val	Test
144 features	0.96	0.81	0.51	48	141	146
100 features	0.97	0.71	0.56	41	155	144
90 features	0.97	0.77	0.76	36	149	114
80 features	0.97	0.79	0.42	39	146	183
70 features	0.97	0.78	0.61	39	146	142
60 features	0.98	0.79	0.81	35	137	93
50 features	0.98	0.79	0.82	20	134	106
40 features	0.97	0.75	0.79	43	157	120
39 features	0.97	0.78	0.68	36	120	146
38 features	0.97	0.81	0.63	27	130	131
37 features	0.97	0.81	0.78	22	120	119
36 features	0.97	0.75	0.76	21	154	117

35 features	0.97	0.74	0.72	26	158	131
186						

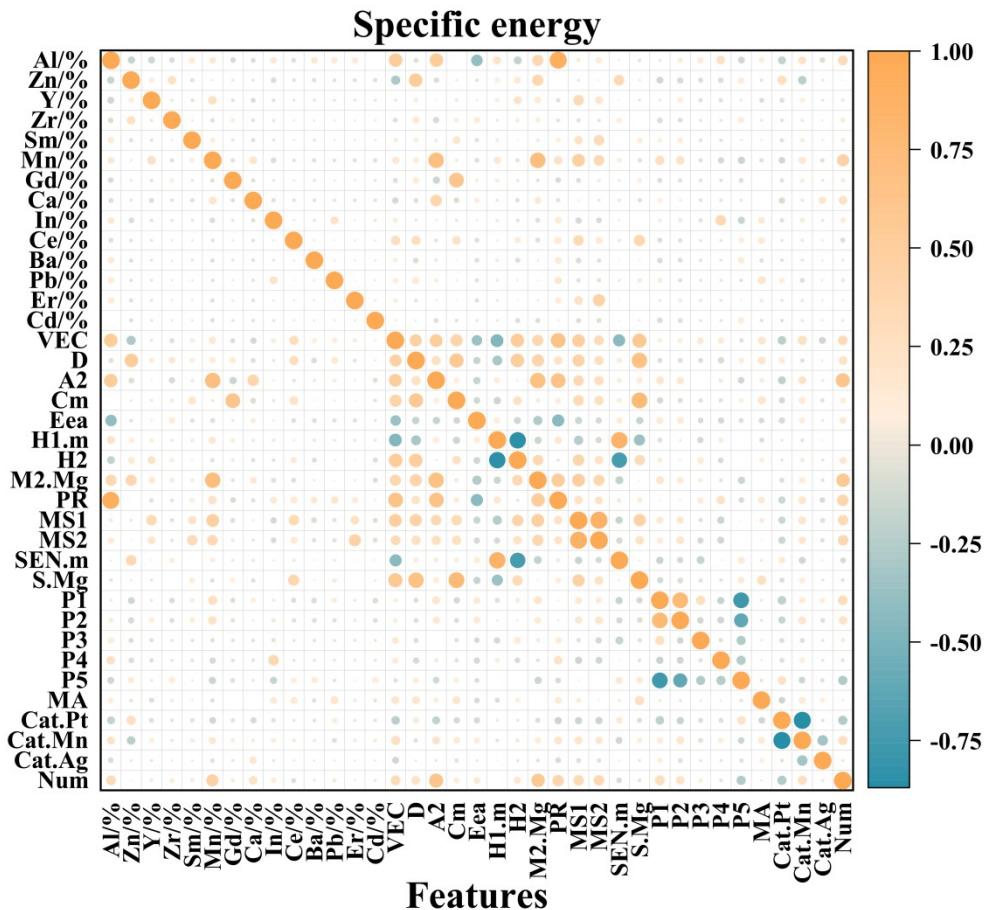
187 **Table S4** The parameter settings of models after screening features by RFE-Lasso.

Feature number	Data partitioning	RFE-Lasso	XGB
144 features	test_size=0.15, random_state=3		random_state=0, n_estimators=31, max_depth=7
100 features	test_size=0.15, random_state=1	Lasso(alpha=1), RFE(estimator=lasso, n_features_to_select=100, step=1)	random_state=0, n_estimators=31, max_depth=8
90 features	test_size=0.15, random_state=5	Lasso(alpha=1), RFE(estimator=lasso, n_features_to_select=90, step=1)	random_state=0, n_estimators=31, max_depth=8
80 features	test_size=0.15, random_state=5	Lasso(alpha=1), RFE(estimator=lasso, n_features_to_select=80, step=1)	random_state=0, n_estimators=31, max_depth=8
70 features	test_size=0.15, random_state=5	Lasso(alpha=1), RFE(estimator=lasso, n_features_to_select=70, step=1)	random_state=0, n_estimators=31, max_depth=8
60 features	test_size=0.15, random_state=5	Lasso(alpha=1), RFE(estimator=lasso, n_features_to_select=60, step=1)	random_state=0, n_estimators=31, max_depth=8
50 features	test_size=0.15, random_state=5	Lasso(alpha=1), RFE(estimator=lasso, n_features_to_select=50, step=1)	random_state=0, n_estimators=71, max_depth=8
40 features	test_size=0.15, random_state=5	Lasso(alpha=1), RFE(estimator=lasso, n_features_to_select=40, step=1)	random_state=0, n_estimators=31, max_depth=8
39 features	test_size=0.15, random_state=0	Lasso(alpha=1), RFE(estimator=lasso, n_features_to_select=39, step=1)	random_state=0, n_estimators=31, max_depth=8
38 features	test_size=0.15, random_state=2	Lasso(alpha=1), RFE(estimator=lasso, n_features_to_select=38, step=1)	random_state=0, n_estimators=61, max_depth=8
37 features	test_size=0.15, random_state=0	Lasso(alpha=1), RFE(estimator=lasso, n_features_to_select=37, step=1)	random_state=0, n_estimators=61, max_depth=9
36 features	test_size=0.15, random_state=5	Lasso(alpha=1), RFE(estimator=lasso, n_features_to_select=36, step=1)	random_state=0, n_estimators=91, max_depth=8
35 features	test_size=0.15, random_state=5	Lasso(alpha=1), RFE(estimator=lasso,	random_state=0, n_estimators=61,

189 **Table S5** The detailed meanings of the 37 features selected by RFE-Lasso.

Order	Feature name	Definition	Feature importance
1	Al/%	The molar fraction of Al	13.3
2	Zn/%	The molar fraction of Zn	7.0
3	Y/%	The molar fraction of Y	0.8
4	Zr/%	The molar fraction of Zr	0.1
5	Sm/%	The molar fraction of Sm	1.2
6	Mn/%	The molar fraction of Mn	2.6
7	Gd/%	The molar fraction of Gd	0.3
8	Ca/%	The molar fraction of Ca	7.4
9	In/%	The molar fraction of In	1.0
10	Ce/%	The molar fraction of Ce	1.2
11	Ba/%	The molar fraction of Ba	0.1
12	Pb/%	The molar fraction of Pb	0.0
13	Er/%	The molar fraction of Er	0.4
14	Cd/%	The molar fraction of Cd	0.2
15	VEC	Valence electron deviation	21.3
16	D	Averaged density deviation	30.0
17	A2	Second lattice constant deviation	7.4
18	Cm	Molar heat capacity deviation	11.0
19	Eea	Electron affinity deviation	76.4
20	H1.m	Averaged mohs hardness	20.3
21	H2	Brinell hardness deviation	28.4
22	M2.Mg	Difference in shear modulus of alloy with pure Mg	25.7
23	PR	Poisson ratio deviation	10.8
24	MS1	Mass magnetic susceptibility deviation	9.8
25	MS2	Molar magnetic susceptibility deviation	13.1
26	SEN.m	The averaged number of electrons in the second outermost shell	16.0
27	S.Mg	Standard entropy deviation	8.6
28	P1	Homogenization	4.1
29	P2	Hot extrusion	1.6
30	P3	Hot rolling	3.0
31	P4	Quenching	5.9
32	P5	As-cast	38.3
33	MA	Current density	116.3
34	Cat.Pt	Pt electrode	5.1
35	Cat.Mn	MnO ₂	8.1
36	Cat.Ag	Ag electrode	0.0

190



191

192 **Fig. S1.** The heatmap of correlation coefficients ($C_{i,j}$) between every two features calculated
 193 via the Pearson method.

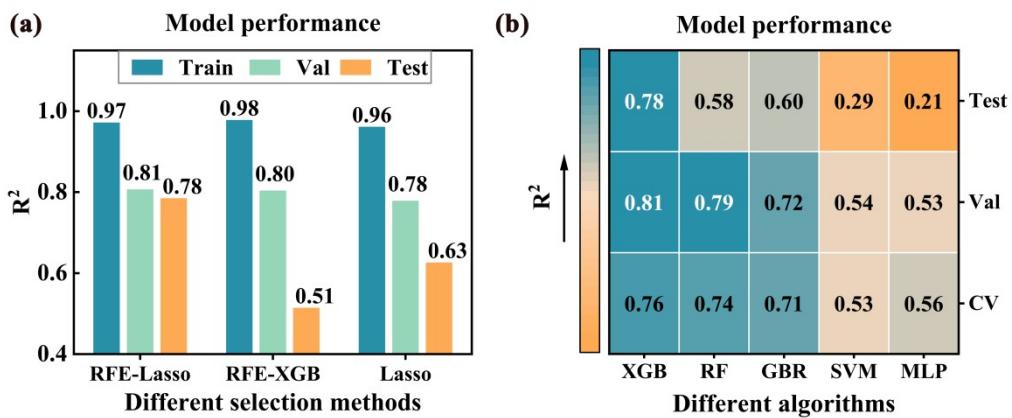
194

195 ***Performance comparison of models***

196 To rigorously validate the effectiveness of the RFE-Lasso method in feature selection,
 197 its performance was comparatively assessed against RFE-XGB and Lasso, with the number
 198 of retained features consistently fixed at 37. As depicted in **Fig. S2a**, RFE-Lasso exhibited
 199 markedly superior feature selection capabilities, achieving a **Test** dataset R^2 of 0.78. This
 200 performance significantly surpassed RFE-XGB ($R^2 = 0.51$) and Lasso ($R^2 = 0.63$), primarily
 201 due to its synergistic integration of the advantages inherent to both RFE and Lasso. Notably,

202 this method proved particularly efficacious for predicting Mg alloys containing elements not
203 present in the original training dataset.

204 Subsequently, a comparative analysis was undertaken to evaluate the applicability and
205 predictive performance of five prevalent ML algorithms—XGBoost (XGB), Random Forest
206 (RF), Gradient Boosting Regression (GBR), Support Vector Machine (SVM), and Multilayer
207 Perceptron (MLP)—on the Mg-air battery dataset. The parameter settings of these models are
208 presented in **Tables S6**. As illustrated in **Fig. S2b**, XGBoost consistently emerged as the
209 highest-performing algorithm, yielding the most robust R^2 values on the **Val** set (0.81), the
210 **Test** set (0.78), and across 10-fold cross-validation (average $R^2 = 0.76$). In stark contrast,
211 while RF performed reasonably well on the **Val** set and during cross-validation, its **Test**
212 dataset R^2 declined significantly to 0.58, indicating a suboptimal capacity for generalization
213 beyond the training data. Furthermore, GBR, SVM, and MLP consistently demonstrated
214 lower predictive performance across both the initial and **Test** datasets. These findings
215 unequivocally establish XGB as the most reliable and effective model for predicting battery
216 properties within this study, offering superior robustness and generalization capabilities
217 compared to the other evaluated algorithms.



218

219 **Fig. S2** Performance comparison of models: (a) models employing three distinct feature

220 selection methods; (b) models utilizing different algorithms.

221 **Table S6** The parameter settings for different algorithms.

Algorithms	Parameters
XGB	random_state = 0, n_estimators = 61, max_depth = 9
RF	n_estimators = 31, max_depth = 19, bootstrap = True, random_state = 47
GBR	learning_rate = 0.28, random_state = 47, n_estimators = 60
SVM	Kernel = 'rbf', C = 1300.0, epsilon = 1e-05, gamma = 0.02
MLP	max_iter=80, hidden_layer_sizes = [64, 64], alpha = 0.58, activation = 'relu', solver = 'lbfgs', random_state = 30

222

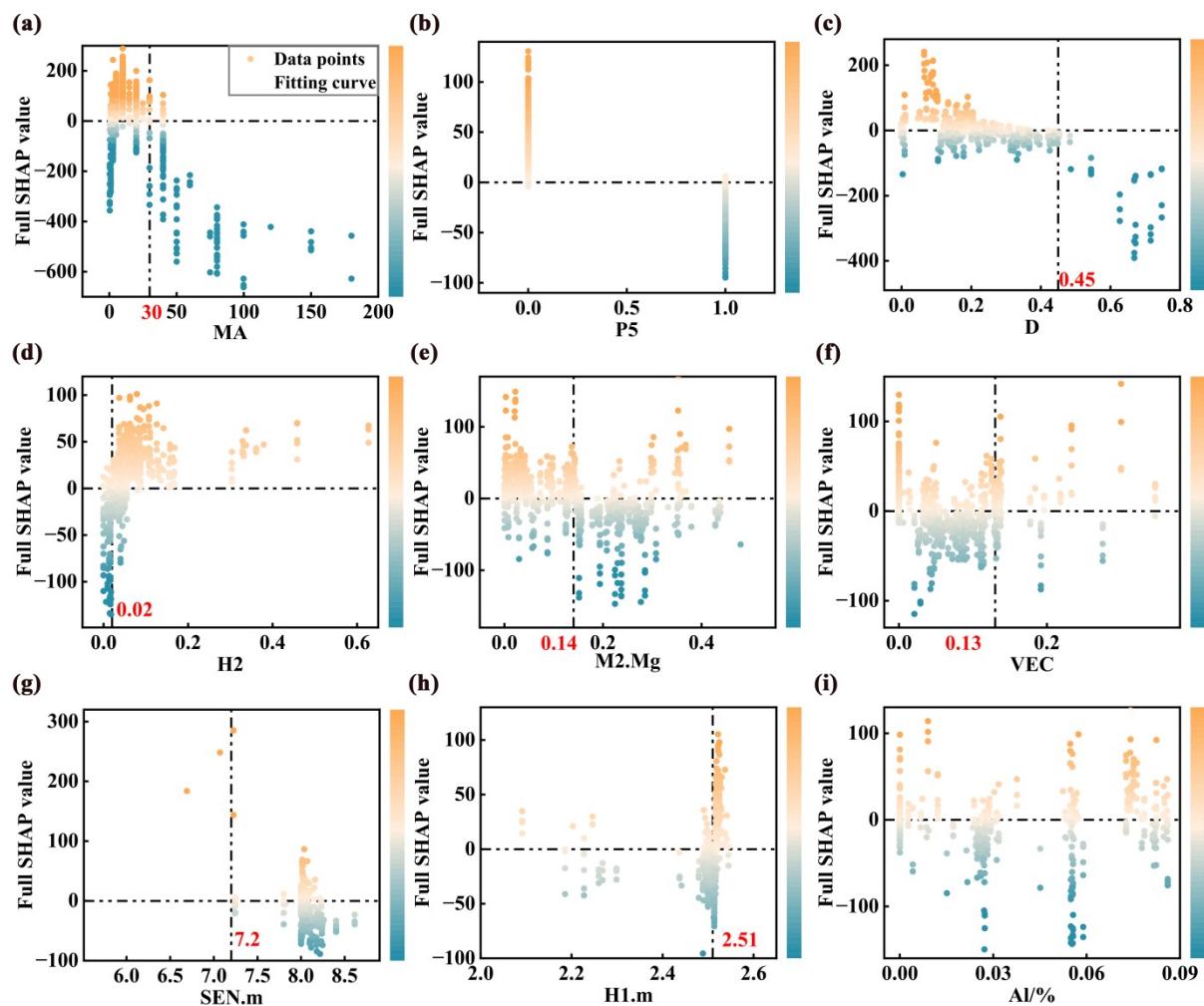
223 ***Detailed calculation of "main SHAP values"***

224 To precisely quantify the individual contribution of each feature to the model's
225 prediction, "Main SHAP values" were derived using the SHAP interaction module. This
226 approach is efficient for distinguishing the independent impact of a feature from its
227 synergistic or antagonistic interactions with other features, thereby enhancing the
228 interpretability of ML model.

229 The SHAP interaction module specifically computes a square interaction matrix for each
230 datapoint, where off-diagonal elements ($SHAP_{i,j}$) represent the interaction effect between
231 feature i and feature j . A positive $SHAP_{i,j}$ indicates a synergistic effect, implying that the joint
232 presence of features i and j enhances the target prediction. Conversely, a negative value
233 signifies an antagonistic effect, where their combined influence diminishes the target
234 prediction.

235 The "Main SHAP values" are specifically defined by the diagonal elements of this
236 matrix, $SHAP_{i,i}$. These self-interaction terms quantify the isolated, individual contribution of
237 feature i to the model's output. By design, $SHAP_{i,i}$ reflects the unique marginal impact of
238 feature i , effectively filtering out the influence of other variables. Consequently, it represents
239 the pure, independent contribution of that single feature.

240 Therefore, for each sample in the dataset and for all 37 features, the SHAP interaction
 241 module was utilized to compute these interaction matrices. The "Main SHAP value" for any
 242 given feature was then directly extracted from the corresponding diagonal element ($SHAP_{i,i}$)
 243 of the corresponding matrix. This methodology provides a direct and explicit measure of each
 244 feature's independent predictive power across all samples, which is crucial for robust
 245 scientific interpretation.



246
 247 **Fig. S3.** The scatter plot of full SHAP values before filtering out the interaction effects: (a)
 248 MA; (b) P5; (c) D; (d) H2; (e) M2.Mg; (f) VEC; (g) SEN.m; (h) H1.m; (i) Al/%.
 249
 250

251 **Table S7** The threshhold value of screening conditions.

Abb.	Descriptor	Threshold value
A	MA	MA ≤ 30
B	Eea	Eea ≥ 13.5
C	P5	P5 = 0
D	D	D ≤ 0.45
E	H2	H2 ≥ 0.02
F	M2.Mg	M2.Mg ≤ 0.14 or M2.Mg ≥ 0.30
G	VEC	VEC ≤ 0.05 or VEC ≥ 0.13
H	H1.m	H1.m ≥ 2.51
B + D	Eea, D	Eea ≥ 13.5 , D ≤ 0.45
B + F	Eea, M2.Mg	Eea ≥ 13.5 , M2.Mg ≤ 0.14 or M2.Mg ≥ 0.30
B + G	Eea, VEC	Eea ≥ 13.5 , VEC ≤ 0.05 or VEC ≥ 0.13
A + B + F	MA, Eea, M2.Mg	MA ≤ 30 , Eea ≥ 13.5 , M2.Mg ≤ 0.14 or M2.Mg ≥ 0.30
A + B + G	MA, Eea, VEC	MA ≤ 30 , Eea ≥ 13.5 , VEC ≤ 0.05 or VEC ≥ 0.13
B + F + G	Eea, M2.Mg, VEC	Eea ≥ 13.5 , M2.Mg ≤ 0.14 or M2.Mg ≥ 0.30 , VEC ≤ 0.05 or VEC ≥ 0.13
A + B + F + G	MA, Eea, M2.Mg, VEC	MA ≤ 30 , Eea ≥ 13.5 , M2.Mg ≤ 0.14 or M2.Mg ≥ 0.30 , VEC ≤ 0.05 or VEC ≥ 0.13
A + B + C + F	MA, Eea, P5, M2.Mg	MA ≤ 30 , Eea ≥ 13.5 , P5 = 0, M2.Mg ≤ 0.14 or M2.Mg ≥ 0.30

252

253 **Table S8** The screening conditions validated using the initial dataset comprising 1,024

254 samples for establishing the ML model.

Abb.	Descriptor	True			False		
		Data points	Good	Bad	Data points	Good	Bad
A	MA	878	15.1%	84.9%	146	2.7%	97.3%
B	Eea	283	24.7%	75.3%	741	9.0%	91.0%
C	P5	480	17.1%	82.9%	544	10.1%	89.9%
D	D	981	13.6%	86.4%	43	9.3%	90.7%
E	H2	819	14.3%	85.7%	205	9.8%	90.2%
F	M2.Mg	634	18.5%	81.5%	390	5.1%	94.9%

G	VEC	589	17.7%	82.3%	435	7.6%	92.4%
H	H1.m	367	9.3%	90.7%	657	15.7%	84.3%
B + D	Eea, D	276	25.4%	74.6%	748	9.0%	91.0%
B + F	Eea, M2.Mg	223	30.9%	69.1%	801	8.5%	91.5%
B + G	Eea, VEC	230	29.1%	70.9%	794	8.8%	91.2%
A + B + F	MA, Eea, M2.Mg	196	35.2%	64.8%	828	8.2%	91.8%
A + B + G	MA, Eea, VEC	199	33.7%	66.3%	825	8.5%	91.5%
B + F + G	Eea, M2.Mg, VEC	196	33.7%	66.3%	828	8.6%	91.4%
A + B + F + G	MA, Eea, M2.Mg, VEC	174	37.9%	62.1%	850	8.4%	91.6%
A + B + C + F	MA, Eea, P5, M2.Mg	123	33.3%	66.7%	901	10.7%	89.3%

255

256 Features B (Eea) and F (M2.Mg) are top 2 effective screening conditions with larger
 257 "Good" yields in "True" samples (**Table S8**). Feature A (MA) emerges as the most effective
 258 to evaluate the "Bad" yield in "False" sample. Although these 8 screening conditions all
 259 exhibit high "Bad" yields in "False" sample, their "Good" yields in "True" samples are
 260 insufficient to reliably determine the potential anodes. Therefore, it is not reliable and
 261 inadequate to identify the high-quality anodes on the threshold value achieved from a single
 262 descriptor.

		Screening results	
		True	False
Actual value	Good	TP	FN
	Bad	FP	TN

263

264 **Fig. S4.** The confusion matrix of screening results.

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN} \quad (5)$$

$$Precision = \frac{TP}{TP + FP} \quad (6)$$

$$Recall = \frac{TP}{TP + FN} \quad (7)$$

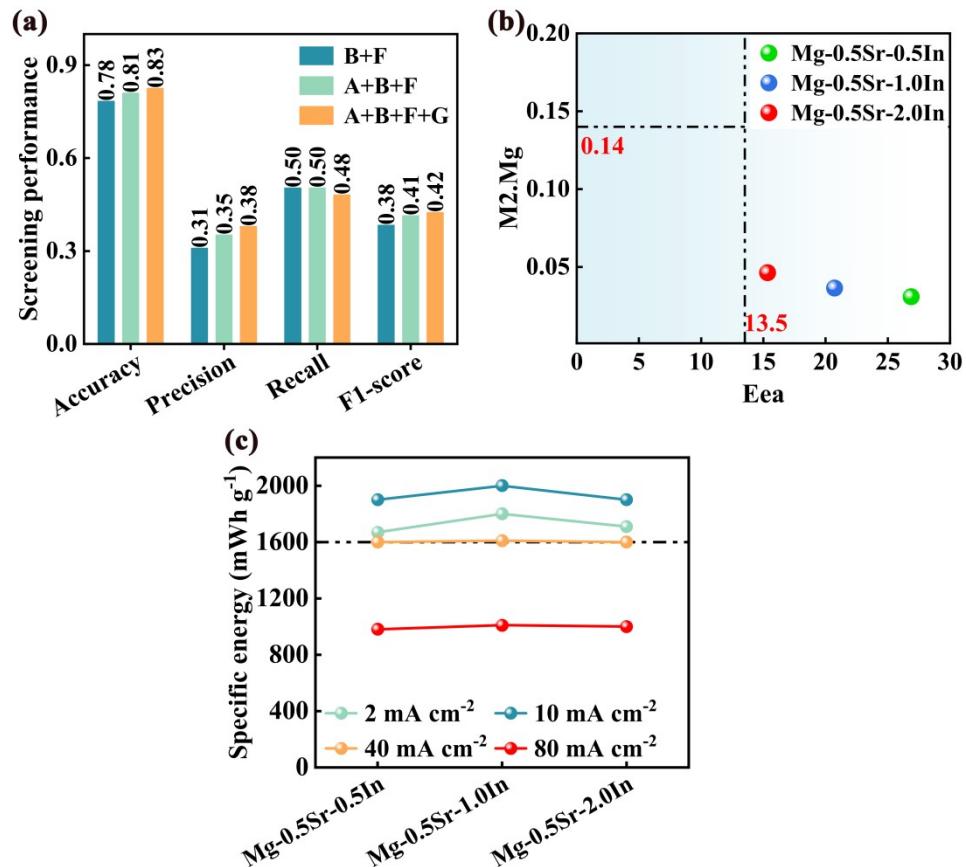
$$F1 = \frac{2TP}{2TP + FN + FP} \quad (8)$$

265

266 **Table S9** The accuracy, presion, recall and F1-score of screening results in original dataset.

Abb.	Description	Accuracy	Precision	Recall	F1-score
A	$MA \leq 30$	26.9%	15.1%	97.1%	26.2%
B	$Eea \geq 13.5$	72.7%	24.7%	51.1%	33.3%
C	$P5 = 0$	55.8%	17.1%	59.9%	26.6%
D	$D \leq 0.45$	16.8%	13.6%	97.1%	23.8%
E	$H2 \geq 0.02$	29.5%	14.3%	85.4%	24.5%
F	$M2.Mg \leq 0.14$ or $M2.Mg \geq 0.30$	47.6%	18.5%	85.4%	30.4%
G	$VEC \leq 0.05$ or $VEC \geq 0.13$	49.4%	17.7%	75.9%	28.7%
H	$H1.m \geq 2.51$	57.4%	9.3%	24.8%	13.5%
B+D		73.3%	25.4%	51.1%	33.9%
B+F		78.3%	30.9%	50.4%	38.3%
B+G		77.2%	29.1%	48.9%	36.5%
A+B+F		81.0%	35.2%	50.4%	41.4%
A+B+G		80.3%	33.7%	48.9%	39.9%
B+F+G		80.4%	33.7%	48.2%	39.6%
A+B+F+G		82.5%	37.9%	48.2%	42.4%
A+B+C+F		82.6%	33.3%	29.9%	31.5%

267



268

269 **Fig. S5.** Screening results and model predictions: (a) the accuracy, presion, recall and F1-
270 score of screening results in original dataset; (b) Eea and M2.Mg value of 12 data points
271 derived from literature data; (c) actual specific energy of 12 samples derived from literature
272 data.

273

274 *Screening performance on ternary Mg-Sr-In alloys*

275 Additionally, the effectiveness of these screening criteria is systematically evaluated by
276 four key metrics in machine learning classification: accuracy, precision, recall, and the F1-
277 score. Detailed methodologies for calculating accuracy, precision, recall, and the F1-score,
278 are provided in **Fig. S4**, Equations (5) - (8), and detailed values are given in **Table S9**. The
279 definitions of the four metrics are as follows: TP (True Positive) denotes the number of
280 positive samples correctly predicted as positive; TN (True Negative) denotes the number of
281 negative samples correctly predicted as negative; FP (False Positive) denotes the number of
282 negative samples incorrectly predicted as positive; FN (False Negative) denotes the number
283 of positive samples incorrectly predicted as negative. Accuracy represents the proportion of
284 samples that are correctly predicted out of the total sample set. Precision indicates the ratio of
285 actual positives in the predicted positives. Recall denotes the proportion of actual positive
286 samples that are correctly identified as positive. The F1-score is the harmonic mean of
287 precision and recall, balancing both metrics.

288 As illustrated in **Fig. S5a**, the accuracy for each combination is approximately 0.80,
289 demonstrating that precise screening can be accomplished with straightforward combinations
290 of several descriptors. Considering both the screening performance and concise, the
291 combination of B + F is selected as the screening condition. Furthermore, it has been verified

292 whether the B+F screening condition can be extended to Mg-Sr-In ternary alloys through
 293 literature data. The Mg-0.5Sr-0.5In, Mg-0.5Sr-1.0In, and Mg-0.5Sr-2.0In alloys derived from
 294 the literature meet the threshold values of the B+F condition (**Fig. S5b**), and thus they should
 295 exhibit excellent battery performance. Indeed, as reported in the literature, the
 296 aforementioned three alloys can achieve a specific energy of at least 1600 mWh g⁻¹ at current
 297 densities not exceeding 40 mA cm⁻² (**Fig. S5c**).

298 **Table S10** ICP results for the chemical composition of the investigated alloys (wt.%).

Alloys	Mg	Sr
Mg-0.1Sr	Bal.	0.09
Mg-0.5Sr	Bal.	0.42
Mg-1Sr	Bal.	1.01

299

300 **Discharge performance**

301 After discharge, specific energy of the Mg-air battery were calculated using the
 302 following equations:

$$Specific\ energy = \frac{\int_0^t I \times U \times \Delta t}{W_{total}} \quad (9)$$

$$W_{theo} = \frac{I \times t}{F \times \sum \left(\frac{x_i \times n_i}{m_i} \right)} \quad (10)$$

303 where W_{theo} (g) means the theoretical weight loss of anode, W_{total} (g) means the actual weight
 304 loss of anode before and after discharge; I (A) is applied current, t (h) is time of discharge; U
 305 (V) represents the voltage of discharge; F is Faraday constant (26.8 A h mol⁻¹), x_i , n_i , and m_i
 306 represent the mass fraction, number of exchanged electrons, and atomic weight, respectively,
 307 of each element in alloys.

308 **Full cell discharge test**

309 The discharge performance of Mg alloys in 3.5 wt.% NaCl solution was measured in a
310 laboratory-assembled full cell. The exposed surface area of anode was approximately 1×1
311 cm^2 . The cathode was the commercial air cathode with MnO_2/C as catalyst ($2 \times 2 \text{ cm}^2$). The
312 cell voltage of Mg-air battery was tested at applied current densities of 1, 2.5, 5, and 10 mA
313 cm^{-2} . During the discharge process, the electrolyte was stirred with the same rate. After the
314 full cell discharge test, the surface of Mg anode was cleaned by $200 \text{ g L}^{-1} \text{ CrO}_3 + 10 \text{ g L}^{-1}$
315 AgNO_3 solution to remove the discharge products and account for the weight loss.

316

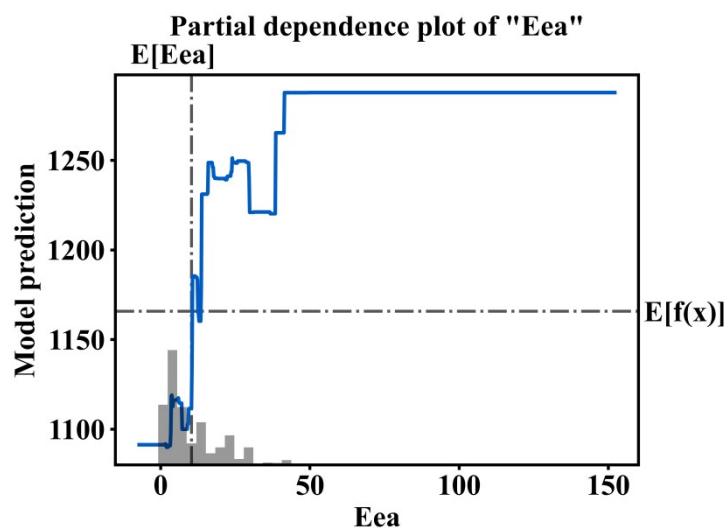
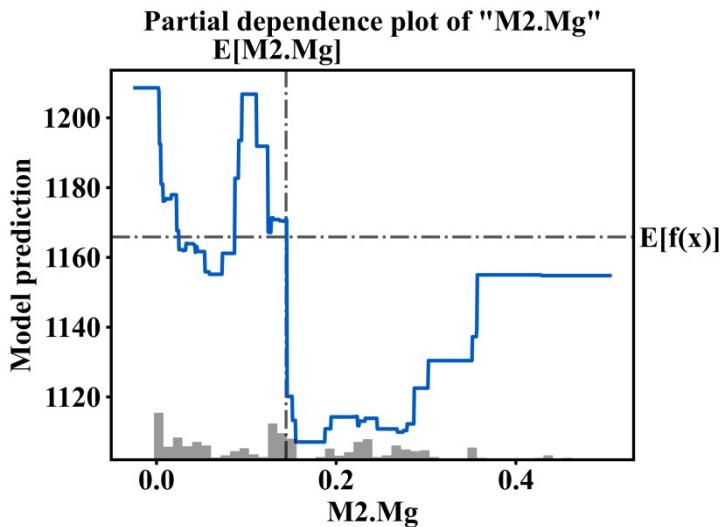


Fig. S6. Partial dependency plot of Eea feature.



319

320

Fig. S7. Partial dependency plot of M2.Mg feature.

321 ***The availability for high-throughput screening***

322 The superior screening performance of the combined Eea and M2.Mg descriptors
 323 (referred to as B + F in Table 1) is evident from their ability to correctly identify 30.9% of
 324 high-performing samples (true positives) and accurately reject 91.5% of low-performing
 325 samples (true negatives). This integrated descriptor approach thus serves as an efficient
 326 screening condition for high-throughput materials discovery.

327 Crucially, Eea and M2.Mg are readily accessible for high-throughput screening and the
 328 prediction of novel materials. Unlike approaches relying on computationally expensive
 329 theoretical calculations (e.g., density functional theory, DFT), these descriptors are derived
 330 from direct formulaic calculations. Such calculations only require fundamental physical
 331 parameters of constituent elements, such as atomic radii and shear moduli, resulting in a
 332 minimal computational cost.

333 This inherent low cost makes them highly suitable for the high-throughput screening of
 334 numerous virtual materials. Specifically, our study demonstrates that when an alloy fails to
 335 satisfy the proposed criteria (i.e., $Eea \geq 13.5$ and $(M2.Mg \leq 0.14 \text{ or } M2.Mg \geq 0.3)$), there is a

336 91.5% probability that a magnesium-air battery utilizing it as an anode will exhibit a specific
337 energy below 1600 mWh g⁻¹. This high negative predictive power establishes these
338 descriptors as potent tools for efficiently eliminating a significant portion of unqualified
339 candidate materials.

340 While alloys satisfying these conditions exhibit a 30.9% probability of exceeding 1600
341 mWh g⁻¹—a moderate success rate for proactively identifying high-energy density
342 materials—their exceptionally low computational burden nonetheless renders them ideal for
343 preliminary screening. They effectively function as a rapid first-pass filter, substantially
344 reducing the pool of materials that would otherwise necessitate more computationally
345 intensive and precise theoretical calculations, thereby significantly accelerating the overall
346 material discovery process.

347

348

349