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1 Supporting information
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3 Data collection

4 A dataset has been constructed to predict the specific energy of Mg-air batteries, 

5 utilizing sample data derived from experimental studies published in relevant literature since 

6 2010. These publications are sourced from reputable academic journals in the fields of 

7 materials science and electrochemistry. The majority of these resources are accessible via 

8 subscription-based platforms, such as Elsevier, American Chemical Society, Springer, and 

9 Royal Society of Chemistry, offering a wide array of high-quality research articles. The data 

10 collection focuses on capturing information on alloy composition, heat treatment processes 

11 (e.g., homogenization, hot extrusion, hot rolling), cathode materials and battery performance. 

12 This effort results in the compilation of 1,235 data points on Mg-air batteries.

13 Subsequently, data cleansing is performed. Initially, 103 entries with missing values are 

14 eliminated. In addition, while the diversity of alloy types and the intricate composition of 

15 alloying elements contribute to an expanded information space for sample analysis, this 

16 complexity also complicates the optimization of alloy compositions and the overall 

17 improvement of their properties. To simplify the dataset, an additional 92 samples of 

18 complex five-element and six-element alloys are excluded.

19

20 Addressing bias and noise in the dataset

21 Variability inherent to diverse data sources and experimental parameters poses 

22 challenges, potentially introducing biases and noise that can compromise predictive model 
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23 performance. To systematically address these issues, the following strategies were rigorously 

24 implemented:

25 Rigorous data source selection: A stringent data source selection protocol was 

26 implemented, exclusively incorporating data points derived from peer-reviewed experimental 

27 studies published post-2010 in high-impact academic journals. This criterion established a 

28 fundamental level of data reliability and adherence to established methodological standards. 

29 Further prioritization was accorded to studies characterized by comprehensive experimental 

30 descriptions, complete datasets, and a demonstrably higher citation frequency, indicative of 

31 their broad influence within the scientific community.

32 Feature engineering of key experimental conditions: Key experimental parameters, such 

33 as alloy composition, heat treatment protocols, and cathode material classifications, were 

34 systematically extracted and engineered into distinctive features for the machine learning 

35 (ML) model. This approach enabled the model to explicitly learn the influence of these 

36 variables on battery performance, thereby effectively accounting for and reducing inherent 

37 biases stemming from varied experimental methodologies.

38 Data standardization: To minimize inter-study variability and mitigate inherent biases, 

39 experimental conditions and reported parameters were rigorously standardized. This involved 

40 normalization based on widely accepted metrics, including metal composition ratios, current 

41 density processing methods, and categorical classifications of cathode catalysts, ensuring 

42 comparability across disparate datasets.

43 Cross-validation: K-fold cross-validation was systematically employed to rigorously 

44 assess the generalization capability and robustness of the ML model, concurrently identifying 
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45 potential latent biases or noise within the dataset. This involved systematically partitioning 

46 the dataset into distinct training and validation subsets, facilitating iterative model evaluation 

47 across diverse data permutations.

48

49 Addressing duplicate or conflicting data

50 In instances where disparate performance data were reported for ostensibly identical 

51 materials within the literature, the primary principle guiding our approach was to 

52 meticulously investigate whether these discrepancies originated from variations in 

53 experimental conditions (e.g., distinct testing temperatures, current densities, electrolyte 

54 compositions, or specific processing protocols). Following careful review, if data for the 

55 same material under purportedly identical experimental conditions nevertheless exhibited 

56 variations, these discrepancies were generally indicative of potential measurement errors, 

57 batch-to-batch variations in sample preparation, or reporting inconsistencies within the 

58 literature. In such scenarios, the subsequent hierarchical approaches were employed:

59 Prioritization: Prioritization was accorded to data sourced from higher-impact, 

60 authoritative journals, or datasets demonstrably widely cited by subsequent research, 

61 reflecting their greater reliability and scientific consensus.

62 Statistical averaging/median: Where multiple reliable but marginally divergent data 

63 points existed, their average or median value was considered for inclusion. The median, in 

64 particular, was favored for its enhanced robustness against potential outliers.

65 Conservative estimation: In specific scenarios, to bolster model robustness and prevent 

66 overly optimistic predictions, a more conservative estimate was adopted. For instance, if the 
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67 optimization objective was specific energy, a lower reported value might be selected.

68 Outlier analysis: Data points exhibiting significant deviations were subjected to rigorous 

69 outlier analysis. This process, critically informed by domain-specific expertise, guided 

70 decisions regarding their correction, removal, or further meticulous scrutiny.

71

72 Addressing data heterogeneity challenges

73 The collection of training data from heterogeneous literature sources inherently poses 

74 challenges to data uniformity, due to potential variations in experimental details across 

75 research groups and the limited ability of selected features to fully capture such variance. To 

76 meticulously address these issues and ensure robust model training, a multi-layered strategy 

77 was employed.

78 Initially, data acquisition prioritized high-impact and authoritative journals, or those 

79 extensively cited in subsequent literature. This established a foundation of reliability and 

80 helped mitigate inconsistencies arising from less rigorously reported studies. Furthermore, 

81 once it was confirmed that observed data discrepancies were not attributable to identifiable 

82 variations in experimental conditions (e.g., measurement error, batch-to-batch variability, or 

83 reporting inconsistencies), a nuanced approach to data treatment was adopted.

84 In instances of slight numerical discrepancies among multiple reliable data points, the 

85 median was preferred over the mean owing to its greater robustness against potential outliers, 

86 which might stem from subtle, unaccounted-for experimental differences. For energy density, 

87 conservative estimates were additionally employed to mitigate the risk of overly optimistic 

88 model predictions in the presence of inherent data scatter.
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89 Concurrently, a rigorous outlier analysis was conducted on data points exhibiting 

90 significant deviations. Guided by domain expertise, decisions were made regarding their 

91 correction, removal, or further investigation, thereby directly addressing potential anomalies 

92 stemming from diverse experimental protocols. Ultimately, to further optimize the dataset, 

93 minimize intrinsic noise, and enhance the model's generalizability to core material systems, a 

94 select number of complex multi-element alloy samples—often associated with higher 

95 inherent variability and more challenging experimental standardization—were systematically 

96 excluded.

97

98 Detailed data cleaning process

99 The data cleaning process comprised the following sequential steps:

100 Missing value handling: Upon initial compilation, a systematic assessment for missing 

101 values was performed. A total of 103 entries were identified as lacking target values. To 

102 uphold data quality and facilitate effective model training, these entries were systematically 

103 excluded from the dataset.

104 Exclusion of complex alloy samples: To streamline the dataset representation and enable 

105 the ML model to more accurately capture the performance patterns of fundamental alloy 

106 systems, highly complex five-element and six-element alloy samples were systematically 

107 excluded. This accounted for 92 multi-element entries. Their removal was justified by their 

108 inherent compositional complexity, which typically leads to performance characteristics 

109 significantly divergent from more prevalent binary, ternary, or quaternary alloys. 

110 Furthermore, as they constituted a minor fraction of the overall dataset, their exclusion aimed 
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111 to optimize the model's generalization capability and enhance interpretability.

112 Data Standardization: Throughout the entire data cleaning process, meticulous attention 

113 was paid to ensuring the consistency of all numerical data units and standardizing data 

114 formats, thereby optimizing the dataset for subsequent ML model processing.

115

116 Exclusion of higher-order Mg alloys

117 This work intentionally excluded higher-order Mg alloys (quinary and above) from the 

118 initial dataset primarily due to insufficient statistical representativeness. The scarcity of data 

119 points for these systems would introduce noise, risk overfitting, and degrade the robustness 

120 and generalization ability of ML models. Moreover, higher-order alloys often exhibit distinct 

121 strengthening mechanisms and microstructural evolutions (e.g., high-entropy effects) 

122 compared to lower-order systems. Mixing fundamentally different metallurgical systems 

123 without adequate data could lead to misleading correlations and hinder accurate model 

124 training.

125 This study focuses on establishing a robust, interpretable ML methodology for screening 

126 new Mg anode materials using simpler alloy systems (binary, ternary, quaternary). This 

127 strategic exclusion ensures foundational reliability, allowing to rigorously validate the 

128 approach and lay a solid basis for future methodological extensions to more complex 

129 compositional spaces.

130 While higher-order Mg alloys represent a promising frontier, their data scarcity is a 

131 current challenge. We propose an iterative methodology: combining high-throughput 

132 theoretical screening (e.g., DFT, CALPHAD) to generate virtual datasets, followed by 
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133 targeted experimental verification. This experimental feedback will continuously calibrate 

134 and optimize the model, forming a closed-loop of prediction and refinement. Future work 

135 will integrate deep learning and multi-scale data fusion to accelerate the discovery and 

136 application of these advanced alloys.

137

138 Feature preparation

139 The alloy composition and experimental testing conditions are recognized as critical 

140 parameters influencing the specific energy of Mg-air batteries. Features that describe the 

141 electronic and physical properties of Mg alloys are utilized, enabling a more comprehensive 

142 understanding of their characteristics. Importantly, these features can be quantified without 

143 the need for intricate and time-consuming quantum chemical calculations, thereby ensuring 

144 more accessible and practical. The types of features employed in this study are detailed in 

145 Tables S1 and S2. As shown in Table S1, the electronic and physical properties of these 

146 alloys are categorized into 36 distinct classes, with each class yielding 3 distinct features 

147 derived from Formulas (1)-(3), where represents the molar ratios of the ith constituent ia

148 elements of Mg alloys, represents the property of the ith element, denotes the mean value ix x

149 of property, signifies the difference of property between the specific element in alloys and xδ

150 mean value of alloys, represents the property of pure Mg, and 
 

indicates the Mgx x.Mgδ

151 difference of property between the specific element in alloys and Mg element.

152 For category i, Formula (1) computes the average electronic or physical properties ( ) x

153 by summing values of i property ( ) according to the molar ratios ( ) of the constituent ix ia

154 elements in Mg alloys, resulting in feature " ". For instance, Eea represents electron mi.
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155 affinity; thus, the average electron affinity of the alloy is calculated using Formula (1) and is 

156 designated as feature "Eea.m". Similarly, Formula (2) is employed to evaluate the variations 

157 in electronic and physical properties among the elements in magnesium alloys, referred to as 

158 feature " ". Furthermore, Formula (3) assesses the performance quality differences between i

159 the doped elements and magnesium within the alloys, designated as feature " ".Mgi.

Feature :mi. ii xax (1)

Feature :i  





 

2
i

ix x
x1aδ (2)

Feature :Mgi.  











2

Mg

i
ix.Mg x

x1aδ (3)

160

161 Note that Eea is calculated exclusively using Formula 1 and Formula 2, whereas Smis, 

162 mixing entropy, is calculated solely with Formula 1. As a result, 105 features are generated to 

163 describe the electronic and physical properties of alloys. The mole fraction of 27 elements 

164 (listed in Table S2) is taken into account as features. Furthermore, features representing six 

165 different thermal treatment processes were incorporated, which significantly influences the 

166 microstructure and macroscopic properties of the alloys. The type of cathode catalyst is also 

167 included, given its pivotal role in the oxygen reduction reaction within the battery. For these 

168 parameters, one-hot encoding was applied to properly represent their distinct nominal 

169 categories. The current density and discharge time, critical experimental parameters, are 

170 included as well, as they are closely related to the power output and energy density of the 

171 battery. In summary, we have assembled a comprehensive set of 144 features. These features 

172 provide ML model with a holistic perspective to understand and predict the performance of 
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173 different alloys when they are used as anodes in Mg-air batteries.

174 Table S1 The list of physical features for predicting specific energy.

Physical propertiesa)

Abb. Description Abb. Description
XP Pauling electronegativities D Averaged density
I1 First ionization energies Dl Averaged density in liquid

I2 Second ionization energies Tm Averaged melting temperature 
calculated by the rule of mixtures

I3 Third ionization energies K Averaged thermal conductivity
AW Atomic weight R Averaged resistivity
VEC Valence electrons C Averaged electrical conductivity

A1 Resulting first lattice constant 
calculated by the rule of mixtures Hf Heat of fusion

A2 Resulting second lattice constant 
calculated by the rule of mixtures Cs Specific heat capacity

A3 Resulting third lattice constant 
calculated by the rule of mixtures Cm Molar heat capacity

Rm Atomic radii Smis Mixing entropy
Rc Covalent radii H1 Mohs hardness
Eea Electron affinity H2 Brinell hardness
MV Molar Volume M1 Bulk modulus
AN Atomic number M2 Shear modulus

SEN The number of electrons in the 
second outermost shell M3 Young modulus

PR Poisson ratio MS3 Volume magnetic susceptibility
MS1 Mass magnetic susceptibility S Standard entropy
MS2 Molar magnetic susceptibility H Standard enthalpy

175 a)The element parameters come from http://www.periodictable.com.

176 Table S2 The list of experimental features for predicting specific energy.

Experimental parameters Experimental parameters
Abb. Description Abb. Description
Mg/% The molar fraction of Mg Ag/% The molar fraction of Ag
Al/% The molar fraction of Al Er/% The molar fraction of Er
Zn/% The molar fraction of Zn Ge/% The molar fraction of Ge
Y/% The molar fraction of Y Cd/% The molar fraction of Cd
Zr/% The molar fraction of Zr Cu/% The molar fraction of Cu
Sm/% The molar fraction of Sm Pr/% The molar fraction of Pr
Mn/% The molar fraction of Mn Th/% The molar fraction of Th
Gd/% The molar fraction of Gd P1 Homogenization
Ca/% The molar fraction of Ca P2 Hot extrusion
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In/% The molar fraction of In P3 Hot rolling
Bi/% The molar fraction of Bi P4 Quenching
Li/% The molar fraction of Li P5 As-cast
Sn/% The molar fraction of Sn P6 Solution
Ce/% The molar fraction of Ce MA Current density
Ga/% The molar fraction of Ga Num The number of elements in alloys
Si/% The molar fraction of Si CT Discharge time
Ba/% The molar fraction of Ba Cat.Pt Pt electrode
Nd/% The molar fraction of Nd Cat.Mn MnO2

Pb/% The molar fraction of Pb Cat.Ag Ag electrode
La/% The molar fraction of La

177

178 SHAP analysis

179 Shapley Additive Explanations (SHAP) is a model interpretation method based on 

180 Shapley values from game theory. A key feature of the SHAP model is its additivity, which 

181 means that the model output can be expressed as the sum of each feature contributions. 

182 Formally, given an input , SHAP model can be represented as follows: 
 

x 



M

1i
i0xf ΦΦ)(

183 (4), where f(x) is the model output,  denotes the baseline value (e.g., the average 0Φ

184 prediction of the model) and  represents the SHAP value for the ith feature.iΦ

185 Table S3 The prediction accuracy of XGB models after screening features by RFE-Lasso.

R2 MAEFeatures
Train Val Test Train Val Test

144 features 0.96 0.81 0.51 48 141 146
100 features 0.97 0.71 0.56 41 155 144
90 features 0.97 0.77 0.76 36 149 114
80 features 0.97 0.79 0.42 39 146 183
70 features 0.97 0.78 0.61 39 146 142
60 features 0.98 0.79 0.81 35 137 93
50 features 0.98 0.79 0.82 20 134 106
40 features 0.97 0.75 0.79 43 157 120
39 features 0.97 0.78 0.68 36 120 146
38 features 0.97 0.81 0.63 27 130 131
37 features 0.97 0.81 0.78 22 120 119
36 features 0.97 0.75 0.76 21 154 117
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35 features 0.97 0.74 0.72 26 158 131

186

187 Table S4 The parameter settings of models after screening features by RFE-Lasso.

Feature 
number

Data 
partitioning RFE-Lasso XGB

144 features test_size=0.15, 
random_state =3

random_state=0, 
n_estimators=31,

max_depth =7

100 features test_size=0.15, 
random_state=1

Lasso(alpha=1),
RFE(estimator=lasso, 

n_features_to_select=100, step=1)

random_state=0, 
n_estimators=31,

max_depth =8

90 features test_size=0.15, 
random_state=5

Lasso(alpha=1),
RFE(estimator=lasso, 

n_features_to_select=90, step=1)

random_state=0, 
n_estimators=31,

max_depth =8

80 features test_size=0.15, 
random_state=5

Lasso(alpha=1),
RFE(estimator=lasso, 

n_features_to_select=80, step=1)

random_state=0, 
n_estimators=31,

max_depth =8

70 features test_size=0.15, 
random_state=5

Lasso(alpha=1),
RFE(estimator=lasso, 

n_features_to_select=70, step=1)

random_state=0, 
n_estimators=31,

max_depth =8

60 features test_size=0.15, 
random_state=5

Lasso(alpha=1),
RFE(estimator=lasso, 

n_features_to_select=60, step=1)

random_state=0, 
n_estimators=31,

max_depth =8

50 features test_size=0.15, 
random_state=5

Lasso(alpha=1),
RFE(estimator=lasso, 

n_features_to_select=50, step=1)

random_state=0, 
n_estimators=71,

max_depth =8

40 features test_size=0.15, 
random_state=5

Lasso(alpha=1),
RFE(estimator=lasso, 

n_features_to_select=40, step=1)

random_state=0, 
n_estimators=31,

max_depth =8

39 features test_size=0.15, 
random_state=0

Lasso(alpha=1),
RFE(estimator=lasso, 

n_features_to_select=39, step=1)

random_state=0, 
n_estimators=31,

max_depth =8

38 features test_size=0.15, 
random_state=2

Lasso(alpha=1),
RFE(estimator=lasso, 

n_features_to_select=38, step=1)

random_state=0, 
n_estimators=61,

max_depth =8

37 features test_size=0.15, 
random_state=0

Lasso(alpha=1),
RFE(estimator=lasso, 

n_features_to_select=37, step=1)

random_state=0, 
n_estimators=61,

max_depth =9

36 features test_size=0.15, 
random_state=5

Lasso(alpha=1),
RFE(estimator=lasso, 

n_features_to_select=36, step=1)

random_state=0, 
n_estimators=91,

max_depth =8

35 features test_size=0.15, 
random_state=5

Lasso(alpha=1),
RFE(estimator=lasso, 

random_state=0, 
n_estimators=61,
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n_features_to_select=35, step=1) max_depth =8

188

189 Table S5 The detailed meanings of the 37 features selected by RFE-Lasso.

Order Feature 
name Definition Feature 

importance
1 Al/% The molar fraction of Al 13.3 
2 Zn/% The molar fraction of Zn 7.0 
3 Y/% The molar fraction of Y 0.8 
4 Zr/% The molar fraction of Zr 0.1 
5 Sm/% The molar fraction of Sm 1.2 
6 Mn/% The molar fraction of Mn 2.6 
7 Gd/% The molar fraction of Gd 0.3 
8 Ca/% The molar fraction of Ca 7.4 
9 In/% The molar fraction of In 1.0 
10 Ce/% The molar fraction of Ce 1.2 
11 Ba/% The molar fraction of Ba 0.1 
12 Pb/% The molar fraction of Pb 0.0 
13 Er/% The molar fraction of Er 0.4 
14 Cd/% The molar fraction of Cd 0.2 
15 VEC Valence electron deviation 21.3 
16 D Averaged density deviation 30.0 
17 A2 Second lattice constant deviation 7.4 
18 Cm Molar heat capacity deviation 11.0 
19 Eea Electron affinity deviation 76.4 
20 H1.m Averaged mohs hardness 20.3 
21 H2 Brinell hardness deviation 28.4 
22 M2.Mg Difference in shear modulus of alloy with pure Mg 25.7 
23 PR Poisson ratio deviation 10.8 
24 MS1 Mass magnetic susceptibility deviation 9.8 
25 MS2 Molar magnetic susceptibility deviation 13.1 

26 SEN.m The averaged number of electrons in the second 
outermost shell

16.0 

27 S.Mg Standard entropy deviation 8.6 
28 P1 Homogenization 4.1 
29 P2 Hot extrusion 1.6 
30 P3 Hot rolling 3.0 
31 P4 Quenching 5.9 
32 P5 As-cast 38.3 
33 MA Current density 116.3 
34 Cat.Pt Pt electrode 5.1 
35 Cat.Mn MnO2 8.1 
36 Cat.Ag Ag electrode 0.0 
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37 Num The number of elements in alloys 6.0
190

191

192 Fig. S1. The heatmap of correlation coefficients (Ci,j) between every two features calculated 

193 via the Pearson method.

194

195 Performance comparison of models

196 To rigorously validate the effectiveness of the RFE-Lasso method in feature selection, 

197 its performance was comparatively assessed against RFE-XGB and Lasso, with the number 

198 of retained features consistently fixed at 37. As depicted in Fig. S2a, RFE-Lasso exhibited 

199 markedly superior feature selection capabilities, achieving a Test dataset R2 of 0.78. This 

200 performance significantly surpassed RFE-XGB (R2 = 0.51) and Lasso (R2 = 0.63), primarily 

201 due to its synergistic integration of the advantages inherent to both RFE and Lasso. Notably, 
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202 this method proved particularly efficacious for predicting Mg alloys containing elements not 

203 present in the original training dataset.

204 Subsequently, a comparative analysis was undertaken to evaluate the applicability and 

205 predictive performance of five prevalent ML algorithms—XGBoost (XGB), Random Forest 

206 (RF), Gradient Boosting Regression (GBR), Support Vector Machine (SVM), and Multilayer 

207 Perceptron (MLP)—on the Mg-air battery dataset. The parameter settings of these models are 

208 presented in Tables S6. As illustrated in Fig. S2b, XGBoost consistently emerged as the 

209 highest-performing algorithm, yielding the most robust R2 values on the Val set (0.81), the 

210 Test set (0.78), and across 10-fold cross-validation (average R2 = 0.76). In stark contrast, 

211 while RF performed reasonably well on the Val set and during cross-validation, its Test 

212 dataset R2 declined significantly to 0.58, indicating a suboptimal capacity for generalization 

213 beyond the training data. Furthermore, GBR, SVM, and MLP consistently demonstrated 

214 lower predictive performance across both the initial and Test datasets. These findings 

215 unequivocally establish XGB as the most reliable and effective model for predicting battery 

216 properties within this study, offering superior robustness and generalization capabilities 

217 compared to the other evaluated algorithms.

218

219 Fig. S2 Performance comparison of models: (a) models employing three distinct feature 
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220 selection methods; (b) models utilizing different algorithms.

221 Table S6 The parameter settings for different algorithms.

Algorithms Parameters
XGB random_state = 0, n_estimators = 61, max_depth = 9
RF n_estimators = 31, max_depth = 19, bootstrap = True, random_state = 47

GBR learning_rate = 0.28, random_state = 47, n_estimators = 60
SVM Kernel = 'rbf', C = 1300.0, epsilon = 1e-05, gamma = 0.02

MLP max_iter=80, hidden_layer_sizes = [64, 64], alpha = 0.58, activation = 'relu', 
solver = 'lbfgs', random_state = 30

222

223 Detailed calculation of "main SHAP values"

224 To precisely quantify the individual contribution of each feature to the model's 

225 prediction, "Main SHAP values" were derived using the SHAP interaction module. This 

226 approach is efficient for distinguishing the independent impact of a feature from its 

227 synergistic or antagonistic interactions with other features, thereby enhancing the 

228 interpretability of ML model.

229 The SHAP interaction module specifically computes a square interaction matrix for each 

230 datapoint, where off-diagonal elements (SHAPi,j) represent the interaction effect between 

231 feature i and feature j. A positive SHAPi,j indicates a synergistic effect, implying that the joint 

232 presence of features i and j enhances the target prediction. Conversely, a negative value 

233 signifies an antagonistic effect, where their combined influence diminishes the target 

234 prediction.

235 The "Main SHAP values" are specifically defined by the diagonal elements of this 

236 matrix, SHAPi,i. These self-interaction terms quantify the isolated, individual contribution of 

237 feature i to the model's output. By design, SHAPi,i reflects the unique marginal impact of 

238 feature i, effectively filtering out the influence of other variables. Consequently, it represents 

239 the pure, independent contribution of that single feature.
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240 Therefore, for each sample in the dataset and for all 37 features, the SHAP interaction 

241 module was utilized to compute these interaction matrices. The "Main SHAP value" for any 

242 given feature was then directly extracted from the corresponding diagonal element (SHAPi,i) 

243 of the corresponding matrix. This methodology provides a direct and explicit measure of each 

244 feature's independent predictive power across all samples, which is crucial for robust 

245 scientific interpretation.

246

247 Fig. S3. The scatter plot of full SHAP values before filtering out the interaction effects: (a) 

248 MA; (b) P5; (c) D; (d) H2; (e) M2.Mg; (f) VEC; (g) SEN.m; (h) H1.m; (i) Al/%.

249

250
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251 Table S7 The threshhold value of screening conditions.

Abb. Descriptor Threshold value

A MA MA ≤ 30

B Eea Eea ≥ 13.5

C P5 P5 = 0

D D D ≤ 0.45

E H2 H2 ≥ 0.02

F M2.Mg M2.Mg ≤ 0.14 or M2.Mg ≥ 0.30
G VEC VEC ≤ 0.05 or VEC ≥ 0.13
H H1.m H1.m ≥ 2.51

B + D Eea, D Eea ≥ 13.5, D ≤ 0.45

B + F Eea, M2.Mg Eea ≥ 13.5, M2.Mg ≤ 0.14 or M2.Mg ≥ 0.30

B + G Eea, VEC Eea ≥ 13.5, VEC ≤ 0.05 or VEC ≥ 0.13
A + B + 

F
MA, Eea, 
M2.Mg

MA ≤ 30, Eea ≥ 13.5, M2.Mg ≤ 0.14 or M2.Mg ≥ 0.30

A + B + 
G

MA, Eea, 
VEC

MA ≤ 30, Eea ≥ 13.5, VEC ≤ 0.05 or VEC ≥ 0.13

B + F + 
G

Eea, M2.Mg, 
VEC

Eea ≥ 13.5, M2.Mg ≤ 0.14 or M2.Mg ≥ 0.30, VEC ≤ 0.05 or VEC ≥ 
0.13

A + B + 
F + G

MA, Eea, 
M2.Mg, VEC

MA ≤ 30, Eea ≥ 13.5, M2.Mg ≤ 0.14 or M2.Mg ≥ 0.30, VEC ≤ 0.05 
or VEC ≥ 0.13

A + B + 
C + F

MA, Eea, P5, 
M2.Mg

MA ≤ 30, Eea ≥ 13.5, P5 = 0, M2.Mg ≤ 0.14 or M2.Mg ≥ 0.30

252

253 Table S8 The screening conditions validated using the initial dataset comprising 1,024 

254 samples for establishing the ML model.

True False
Abb. Descriptor Data 

points
Good Bad

Data 
points

Good Bad

A MA 878 15.1% 84.9% 146 2.7% 97.3%

B Eea 283 24.7% 75.3% 741 9.0% 91.0%

C P5 480 17.1% 82.9% 544 10.1% 89.9%

D D 981 13.6% 86.4% 43 9.3% 90.7%

E H2 819 14.3% 85.7% 205 9.8% 90.2%

F M2.Mg 634 18.5% 81.5% 390 5.1% 94.9%
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G VEC 589 17.7% 82.3% 435 7.6% 92.4%
H H1.m 367 9.3% 90.7% 657 15.7% 84.3%

B + D Eea, D 276 25.4% 74.6% 748 9.0% 91.0%

B + F Eea, M2.Mg 223 30.9% 69.1% 801 8.5% 91.5%

B + G Eea, VEC 230 29.1% 70.9% 794 8.8% 91.2%
A + B + F MA, Eea, M2.Mg 196 35.2% 64.8% 828 8.2% 91.8%
A + B + G MA, Eea, VEC 199 33.7% 66.3% 825 8.5% 91.5%
B + F + G Eea, M2.Mg, VEC 196 33.7% 66.3% 828 8.6% 91.4%

A + B + F + G MA, Eea, M2.Mg, VEC 174 37.9% 62.1% 850 8.4% 91.6%
A + B + C + F MA, Eea, P5, M2.Mg 123 33.3% 66.7% 901 10.7% 89.3%

255

256 Features B (Eea) and F (M2.Mg) are top 2 effective screening conditions with larger 

257 "Good" yields in "Ture" samples (Table S8). Feature A (MA) emerges as the most effective 

258 to evaluate the "Bad" yield in "False" sample. Although these 8 screening conditions all 

259 exhibit high "Bad" yields in "False" sample, their "Good" yields in "Ture" samples are 

260 insufficient to reliably determine the potential anodes. Therefore, it is not reliable and 

261 inadequate to identify the high-quality anodes on the threshold value achieved from a single 

262 descriptor.

263

264 Fig. S4. The confusion matrix of screening results.
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265

266 Table S9 The accuracy, presion, recall and F1-score of screening results in original dataset.

Abb. Description Accuracy Precision Recall F1-score
A MA ≤ 30 26.9% 15.1% 97.1% 26.2%
B Eea ≥ 13.5 72.7% 24.7% 51.1% 33.3%
C P5 = 0 55.8% 17.1% 59.9% 26.6%
D D ≤ 0.45 16.8% 13.6% 97.1% 23.8%
E H2 ≥ 0.02 29.5% 14.3% 85.4% 24.5%
F M2.Mg ≤ 0.14 or M2.Mg ≥ 0.30 47.6% 18.5% 85.4% 30.4%
G VEC ≤ 0.05 or VEC ≥ 0.13 49.4% 17.7% 75.9% 28.7%
H H1.m ≥ 2.51 57.4% 9.3% 24.8% 13.5%

B+D 73.3% 25.4% 51.1% 33.9%
B+F 78.3% 30.9% 50.4% 38.3%
B+G 77.2% 29.1% 48.9% 36.5%

A+B+F 81.0% 35.2% 50.4% 41.4%
A+B+G 80.3% 33.7% 48.9% 39.9%
B+F+G 80.4% 33.7% 48.2% 39.6%

A+B+F+G 82.5% 37.9% 48.2% 42.4%
A+B+C+F 82.6% 33.3% 29.9% 31.5%

267

268
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269 Fig. S5. Screening results and model predictions: (a) the accuracy, presion, recall and F1-

270 score of screening results in original dataset; (b) Eea and M2.Mg value of 12 data points 

271 derived from literature data; (c) actual specific energy of 12 samples derived from literature 

272 data.

273

274 Screening performance on ternary Mg-Sr-In alloys

275 Additionally, the effectiveness of these screening criteria is systematically evaluated by 

276 four key metrics in machine learning classification: accuracy, precision, recall, and the F1-

277 score. Detailed methodologies for calculating accuracy, precision, recall, and the F1-score, 

278 are provided in Fig. S4, Equations (5) - (8), and detailed values are given in Table S9. The 

279 definitions of the four metrics are as follows: TP (True Positive) denotes the number of 

280 positive samples correctly predicted as positive; TN (True Negative) denotes the number of 

281 negative samples correctly predicted as negative; FP (False Positive) denotes the number of 

282 negative samples incorrectly predicted as positive; FN (False Negative) denotes the number 

283 of positive samples incorrectly predicted as negative. Accuracy represents the proportion of 

284 samples that are correctly predicted out of the total sample set. Precision indicates the ratio of 

285 actual positives in the predicted positives. Recall denotes the proportion of actual positive 

286 samples that are correctly identified as positive. The F1-score is the harmonic mean of 

287 precision and recall, balancing both metrics.

288 As illustrated in Fig. S5a, the accuracy for each combination is approximately 0.80, 

289 demonstrating that precise screening can be accomplished with straightforward combinations 

290 of several descriptors. Considering both the screening performance and concise, the 

291 combination of B + F is selected as the screening condition. Furthermore, it has been verified 
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292 whether the B+F screening condition can be extended to Mg-Sr-In ternary alloys through 

293 literature data. The Mg-0.5Sr-0.5In, Mg-0.5Sr-1.0In, and Mg-0.5Sr-2.0In alloys derived from 

294 the literature meet the threshold values of the B+F condition (Fig. S5b), and thus they should 

295 exhibit excellent battery performance. Indeed, as reported in the literature, the 

296 aforementioned three alloys can achieve a specific energy of at least 1600 mWh g-1 at current 

297 densities not exceeding 40 mA cm-2 (Fig. S5c). 

298 Table S10 ICP results for the chemical composition of the investigated alloys (wt.%).

Alloys Mg Sr

Mg-0.1Sr Bal. 0.09

Mg-0.5Sr Bal. 0.42

Mg-1Sr Bal. 1.01

299

300 Discharge performance

301 After discharge, specific energy of the Mg-air battery were calculated using the 

302 following equations:

total
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303 where Wtheo (g) means the theoretical weight loss of anode, Wtotal (g) means the actual weight 

304 loss of anode before and after discharge; I (A) is applied current, t (h) is time of discharge; U 

305 (V) represents the voltage of discharge; F is Faraday constant (26.8 A h mol-1), xi, ni, and mi 

306 represent the mass fraction, number of exchanged electrons, and atomic weight, respectively, 

307 of each element in alloys.
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308 Full cell discharge test

309 The discharge performance of Mg alloys in 3.5 wt.% NaCl solution was measured in a 

310 laboratory-assembled full cell. The exposed surface area of anode was approximately 1 × 1 

311 cm2. The cathode was the commercial air cathode with MnO2/C as catalyst (2 × 2 cm2). The 

312 cell voltage of Mg-air battery was tested at applied current densities of 1, 2.5, 5, and 10 mA 

313 cm⁻2. During the discharge process, the electrolyte was stirred with the same rate. After the 

314 full cell discharge test, the surface of Mg anode was cleaned by 200 g L⁻1 CrO3 + 10 g L⁻1 

315 AgNO3 solution to remove the discharge products and account for the weight loss.

316

317

318 Fig. S6. Partial dependency plot of Eea feature.
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319

320 Fig. S7. Partial dependency plot of M2.Mg feature.

321 The availability for high-throughput screening

322 The superior screening performance of the combined Eea and M2.Mg descriptors 

323 (referred to as B + F in Table 1) is evident from their ability to correctly identify 30.9% of 

324 high-performing samples (true positives) and accurately reject 91.5% of low-performing 

325 samples (true negatives). This integrated descriptor approach thus serves as an efficient 

326 screening condition for high-throughput materials discovery.

327 Crucially, Eea and M2.Mg are readily accessible for high-throughput screening and the 

328 prediction of novel materials. Unlike approaches relying on computationally expensive 

329 theoretical calculations (e.g., density functional theory, DFT), these descriptors are derived 

330 from direct formulaic calculations. Such calculations only require fundamental physical 

331 parameters of constituent elements, such as atomic radii and shear moduli, resulting in a 

332 minimal computational cost.

333 This inherent low cost makes them highly suitable for the high-throughput screening of 

334 numerous virtual materials. Specifically, our study demonstrates that when an alloy fails to 

335 satisfy the proposed criteria (i.e., Eea ≥ 13.5 and (M2.Mg ≤ 0.14 or M2.Mg ≥ 0.3)), there is a 
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336 91.5% probability that a magnesium-air battery utilizing it as an anode will exhibit a specific 

337 energy below 1600 mWh g⁻1. This high negative predictive power establishes these 

338 descriptors as potent tools for efficiently eliminating a significant portion of unqualified 

339 candidate materials.

340 While alloys satisfying these conditions exhibit a 30.9% probability of exceeding 1600 

341 mWh g⁻1—a moderate success rate for proactively identifying high-energy density 

342 materials—their exceptionally low computational burden nonetheless renders them ideal for 

343 preliminary screening. They effectively function as a rapid first-pass filter, substantially 

344 reducing the pool of materials that would otherwise necessitate more computationally 

345 intensive and precise theoretical calculations, thereby significantly accelerating the overall 

346 material discovery process.

347

348

349


