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Fig. S1. Schematic P−E loops used for the calculation of discharge energy density and efficiency. It can 
be divided into two processes: polarization and depolarization. Among them, the area in green in the 
figure represents Ud, and the area in blue represents energy loss (Uloss).
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Fig. S2. Discharge energy densities of the P(VDF-CTFE)-based nanocomposites containing different 
volume fractions of dopa@BT NWs.
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Fig. S3. Schematic diagram of (a) the preparation of BaTiO3 nanowires and (b) nanocomposite bilayers. 
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Fig. S4. Cross-sectional localized high-resolution magnified SEM image of the 8dBP-8PI 
nanocomposite. Due to the excellent low-temperature and high-temperature stability of the PI film, it 
can be used for a long time at temperatures ranging from −200 to 300 ℃, and it will not crack even in 
liquid helium at −269 ℃. Therefore, the conventional liquid nitrogen quenching method for preparing 
SEM cross-sectional samples is not applicable for preparing the 8dBP-8PI composite film cross-section. 
To overcome this, we adopted the rapid cutting method using ultra-thin blades to prepare the 8dBP-8PI 
nanocomposite film cross-section. The specific procedure was as follows: The 8dBP-8PI layered 
nanocomposite film was placed on a polytetrafluoroethylene plate, and then it was rapidly cut using an 
ultra-thin blade to obtain a cross-section suitable for microscopic morphology observation.
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Fig. S5. FTIR spectra of PI, dBP, and dBP-PI films.
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Table S1. Ferroelectric properties of xdBP-8PI nanocomposites and the local electric field 

strength in layers of different thicknesses.

Samples
Eb 

(MV/m)

E1 

(MV/m)

E2 

(MV/m)

Pmax 

(μC/cm2)

Pr 

(μC/cm2)

ΔP 

(μC/cm2)

Pure PI 378 378 --- 2.52 0.23 2.29

dPB 356 356 --- 10.69 3.10 7.59

4dBP-8PI 424 158 557 8.11 0.91 7.20

8dBP-8PI 405 179 631 11.29 2.60 8.69

10dBP-

8PI
364 171 605 11.61 3.19 8.42
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Table S2. Comparison of energy density and efficiency of dielectric polymer composites

Composites
Energy density 

(J/cm3)
Energy efficiency 

(%)
Electric field 

(MV/m)
References

PVDF/BT nws // E 10.8 61.4 240 1

PVDF/TiO2(Array-1) 8.9 41.4 505 2
P(VDF-TrFE-

CTFE)/TiO2@PZT
6.9 --- 143 3

PVDF/BST 13.1 69 340 4

P(VDF-HFP)/NBR (2 wt%) 11.3 73.3 500 5
PEI-10 vol% BaTiO3/P(VDF-

HFP)
6.0 96.8 450 6

PS/TiO2/Al2O3 4.43 90 550 7
P(VDF-TrFE-CFE)/PMMA-15 

wt%
9.3 73 520 8

P(VDF-TrFE-CFE) 5.4 --- 270 8

Trilayered DE/P(VDF–HFP) 11.8 89 300 9

C01-3 9.73 --- 453 10
TO-np/PVDF-BSBT-nf/PVDF-

TO-np/PVDF
7.99 --- 300 11

BaTiO3-3wt%BN/PVDF 16.1 57 500.3 12

PET/BNNS-d12.14 8.77 96.5 736 13

DGM 19.68 71 700 14

4dBP-8PI 14.1 72 424 This work

8dBP-8PI 15.8 56 403 This work

10dBP-8PI 13.7 50 364 This work
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