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Material characterization and electrochemical analysis

The morphological and structural characteristics of the developed catalysts were
investigated using scanning electron microscopy (SEM) with the model MIRA3 TESCAN at Yonsei
University (South Korea) and transmission electron microscopy (TEM) on a JEM-F200 (Japan) at
the Yonsei University Joint Research Center (South Korea). Surface chemistry analysis was
conducted using X-ray photoelectron spectroscopy (XPS) with a K-Alpha instrument (Thermo

Fisher Scientific, UK) at the Structural Analysis Division of the Yonsei University Joint Research
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Center. The survey spectrum was calibrated by referencing the C1s peak, which was fixed at 284.8
eV. Peak deconvolution of the XPS spectra was performed using the Peak Fit software. The peak
positions were assigned based on standard photoelectron emission data from the National
Institute of Standards and Technology (NIST) X-ray Photoelectron Spectroscopy Database
(Standard Reference Database 20, Version 5.0). The crystalline properties of the catalysts were
examined via X-ray diffraction (XRD) analysis, of Rigaku diffractometer (Maxima XRD-7000)
utilizing a Cu—Ka radiation source (A = 0.15406 A.U.), also at the Yonsei University Joint Research

Center.

Electrochemical performance evaluations were performed in a three-electrode cell connected to
an IVIUMNSTAT multichannel electrochemical workstation. The synthesized materials (1 cm x 1
cm), a graphite rod (Diameter 3.05mm with 99.9995% metal basis, ultra “F” purity), and a
saturated Ag/AgCl (3.0 M KCI) electrode were used as the working, counter, and reference
electrodes, respectively. To study OER/HER activities, Linear sweep voltammetry (LSV)
measurement was performed at a scan rate of 2.0 mV s in alkaline freshwater medium (1.0 M
KOH, pH~14 ), natural seawater and simulated seawater (1.0 M KOH +0.5 M NaCl, pH~12.9).
Natural seawater(pH~13.2), filtered multiple times, was supplemented with 1.0 M KOH and
stirred for 24 h. All electrolytes were saturated by the N, gas for 15 min before the
experiments. The obtained linear sweep voltametric was corrected by the iR (~90%)
compensation for the HER and OER following the equation?!

EiR _ corrected — E(US.RHE) —IX RS (l)

(Where, ‘i’ and ‘Rs’ are the current and resistance of the electrolytic solution respectively).
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The as obtained potential was switch to RHE (Reversible hydrogen electrode ) potential using

formula %
Epue = Eagjagcr + 0.098 + 0.059pH.......... (ii)
Stability of electrodes was examined by chronoamperometry at a fixed overpotential (n) to

achieve an initial current response of ~50 mA cm= and ~100 mA cm=2. The cyclic voltammetry
(CV) was conducted at various scan rates from 10 to 100 mV s™! to estimate the double-layer
capacitance (Cy) that is associated with the electrochemical surface area (ECSA) of the
synthesized catalysts by following equations 34.

Cy=Ja—jc/2unnnn. (iii)

Where, j, and j. is the anodic and cathodic voltametric current density.
ECSA=Cygp/Currrrerrererrnermernnnnn (iv)

Where Cyand C;are double-layer capacitance and specific capacitance of a flat surface
respectively.

The Faradaic efficiency for water splitting catalyzed by Co@Fesa)-MoO/MoP  was computed
by dividing the experimentally generated gas quantity by the theoretically calculated gas amount,

determined through the charge passed through the electrode® :

Faradaic efficiency (nF)
Fe n.F.V measurement )
nF = Toymy 4
where nF is the faradaic efficiency, n is the number of exchanged electrons in the reaction, F is

the Faraday constant, V measurement is the volume of the measured H, or O, gas, | is the applied

current, t is the electrolysis time, and Vm is the molar volume (22.4 dm3 mol). Electrochemical

3
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impedance spectroscopy (EIS) technique was studied by applying 5 mV amplitude AC voltage in
the frequency range (0.01 Hz to 100 kHz), to evaluate the charge transfer resistance of the
electrodes. For comparison of electrochemical performance, commercial Pt/C and RuO; catalysts
on carbon cloth (CC)-based electrodes were prepared. In this process, Pt/C (20 wt.% Pt) or RuO,
(15 mg), equivalent to the loading of Co@Fe(sp-MoO/MoP on CC (1 cm x 1 cm), was dissolved in
500 plL of pure ethanol containing 10 pL of Nafion (5 wt.%) under continuous sonication for 40
minutes. The resulting ink was applied to both sides at dropped wise by the drop casting method
of the CC substrate (1 cm x 1 cm) and dried under vacuum at 60 °C overnight before being used

for electrochemical characterization.

Turnover frequency (TOF) evaluation.

To calculate the TOF, cyclic voltammetry (CV) curves for various fabricated materials were
recorded at a scan rate of 10 mV s™'in a 1.0 M PBS solution with a pH of approximately 6.5 (Figure
S15).The absolute values of the cathodic and anodic voltametric charges recorded during a single
measurement were summed. The quantity of active species (n) was then determined using the

following equation ©:

Q It IV

2F 2F 2Fv (vi)

Then, TOF (s?) is calculated following equation:

Here, Q represents the voltammetric charge, F is the Faraday constant (C mol™), Ill is the current

density (A cm™), ttt is time (s), V is the voltage (V), v is the scan rate (V s™), jjj is the current (A)
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recorded during linear sweep voltammetry (LSV) tests, A is the electrode area (1 cm?), and mmm
denotes the number of electrons required to produce one molecule of H, or O, from H,0. For
the HER and OER, m is vi and vii, respectively.
Assembly of Anion exchange membrane water electrolysis(AEMWE) assembly

AEMWE devices were assembled using a 4.5 x 4.5 cm? configuration. Co@Fe(SA)-MoO/MoP
was used as both the anode and cathode catalyst. For comparison, commercial RuO, and Pt/C (5
wt%) were dispersed in isopropanol with 5 wt% Sustainion XA9 ionomer and ultrasonicated for 1
hour to prepare catalyst inks, which were then air-brushed onto gas diffusion layers to achieve
the desired loadings. A PiperlON® 40 um self-supporting anion exchange membrane and gas
diffusion layers (carbon cloth and stainless-steel fiber felt) were employed in the assembly. A 1.0
M KOH electrolyte was circulated through both electrodes at 2 mL min™". Polarization curves were
recorded potentiodynamically at 5 mV s™, and durability tests were conducted under continuous
water electrolysis. All data are presented without iR correction.
Computational methods

First-principles calculations were conducted using the projector-augmented wave method’

and the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation &, as implemented in
the Vienna Ab Initio Simulation Package (VASP)°. The calculations were carried out using a plane
wave basis set with a cutoff energy of 520 eV, along with a gamma-centered 2x2x1 grid for k-
point sampling. The electronic self-consistency and ionic relaxation loops were converged to
thresholds of 10-5 eV and 0.03 eV/A, respectively. All calculations were spin-polarized, and Van

der Waals (vdW) interactions were incorporated using the DFT-D3 correction method?. The
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calculations were conducted using the experimentally observed Mo0O2(-111) and MoP(101)
slabs. The hydrogen adsorption energy was determined using the equation E_(ads_H)=E_All-
E_Substrate-1/2E_(H_2 ), where E_AIl, E_substrate, and E_(H_2 ) represent the total energies of
the complete system, the substrate, and the H, molecule, respectively. The Gibbs free energy for
the hydrogen evolution reaction (HER) was evaluated using the equation AGH* = AEads + AEZPE
—TAS, where AEads represents the hydrogen adsorption energy on the slabs (H*), and AEZPE and
AS correspond to the zero-point energy and entropy differences between the free and adsorbed
states, respectively. The density of states (DOS) was obtained to investigate the electronic
properties.

Battery Performance Test

The cell measurements were performed using a standard two-electrode system, with the
prepared catalysts serving as the cathode and a Zn foil plate as the anode in a 1.0 M KOH
electrolyte. Polarization curves were recorded at a scan rate of 5 mVs™ using a ZIVE potentiostat,
and power density curves were derived from the polarization data. Long-term stability was
assessed through chronoamperometry discharge testing at 10 mA cm™2 in both alkaline seawater

and 1.0 M KOH electrolyte.



123 Figure S1.(a-c) SEM images of Co-OH NRs grown on CC substrate.
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Figure S2.(a-d) SEM images of Co NRs grown on CC substrate after thermal treatment.
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154 Figure S3.(a-c) SEM images of Co@MoO, grown on CC substrate.
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174 Figure S4.(a-d) SEM images of Co@Fe(sa)-MoO/MoP grown on CC substrate.
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183 Figure S5.(a-b) SEM images of different time grown of MoO, on Co NRs on CC substrate.
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Figure S6. Nitrogen adsorption-desorption isotherms of (a) Co@Fesp-MoO/MoP and bare

carbon cloth; (b) Pore size distribution of Co@Fe(sp-MoO/MoP and bare carbon cloth
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199 Figure S7.XRD analysis of Co NRs and Co(OH), NRs prepared on CC.
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216 Figure S9. Overpotential comparison of the prepared samples towards (a) HER and (b) OER

217 measured at 50, 100 and 200 mA cm™ current density in an alkaline freshwater environment.
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Figure S11. Multi-step stability of the Co@Fe(sp-MoO/MoP (a) HER and (b) OER in an alkaline

environment (1.0 M KOH).
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250 Figure S12. (a-d) FE-SEM images of the Co@Fesn)-MoO/MoP after HER stability tests at 100 mA

251 cm current density
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260 Figure S13.(a) HER and (b) OER LSV curves of the Co@Fes)-MoO/MoP measured after long-
261 term stability tests conducted at 50 mA cm2 and 100 mA cm current density, respectively
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278 Figure S14.(a-d) FE-SEM images of the Co@Fesp-MoO/MoP after OER stability tests at 300 mA
279 cm? current density
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288 Figure S15. (a) ) XRD patterns of Co@Fe(sp-MoO/MoP sample before and after long-term
289 HER/OER stability tests conducted at 100 mA cm current density;
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307 Figure S17.(a-e) CV curves of prepared samples measured at scan rate 10 mV s scan rate in 1.0

308 M PBS electrolyte.
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322 Figure S18. (a) TOF, analysis of the developed catalysts. (b)The exchange current density of

323 Co@Fe(sp-MoO/MoP in 1.0 M KOH
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341 Figure S19. Overpotential comparison of the prepared samples towards (a) HER and (b) OER

342 measured at 50, 100 and 200 mA cm2 current density in a natural seawater environment.
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372 Figure S21. (a-d) FE-SEM images of the Co@Fess-MoO/MoP after HER stability tests at 100 mA

373 cm? current density
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382 Figure S22. (a-d) FE-SEM images of the Co@Fesa-MoO/MoP after OER stability tests at 100 mA

383 cm current density

29



384
385
386

387
388 Figure S23. HR-TEM images of the Co@Fesa-MoO/MoP after HER stability tests at 100 mA cm

389 current density
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403 Figure S24.HR-TEM images of the Co@Fesa-MoO/MoP after OER stability tests at 100 mA cm

404 current density
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Figure S25. (a) XRD patterns of Co@Fesp-MoO/MoP sample before and after long-term HER/OER
stability tests conducted at ~100 mA cm2 current density; (b) XPS survey scan comparison of
Co@Fe(sp-MoO/MoP samples before and after HER/OER stability tests and with high-resolution

peak deconvolutions of (c) Mo3d, (d) P2p, (e) O1s, and (f) Co2p.
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423 Figure S26.Raman spectra comparison of Co@Fesx)-MoO/MoP sample before and after HER and

424 OER stability measured at 100 mA cm current density in natural seawater.
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431 Figure S27. LSV curves of the Co@Feia-MoO/MoP ) measured after long-term stability tests
432 conducted in different electrolytes (a) KOH,(b) Natural seawater and (c) Simulated seawater at

433 100 mA cm2 and 300 mA cm current density, respectively
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Figure S28. FE-SEM images of Co@Fesp-MoO/MoP after device stability tests in different

electrolytes: (a-c) 1.0 M KOH, (d-f) simulated seawater, and (g-i) natural seawater, showing the

morphological changes after prolonged testing.
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441 Figure S29. Nyquist plots of impedance spectra at 2.11V

Co@Fega-MoO/MoP
RuO, // Pt/C
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442 Table S1.Comparison of the HER overpotentials in 1.0 M KOH between Co@Fe(sp-MoO/MoP and

443

444

445

recent reported electrocatalysts.

Catalysts N1oo (MV) | Nago (MV) | Tafel slope References
(mV dec?)

Co@Fe(sp-MoO/MoP 36 57 32 This work

NiP,/NiSe, 89 "y, 160 "y 65.7 Appl. Catal. B Environ. 282
(2021) 119584

0.02 Ni-MoP 162, 102.6 Nano Energy. 70 (2020) 104445

Co0O/CoMo00;/Co,M0505 | 5174 1957, 66 Nanoscale, 15 (2023) 15219-
15229

Mo—NiCoP-3 148M09 60 Nano-Micro Lett. (2019) 11:55

Mo(NiFeCo),/Ni 200 Ny300 | 35 Adv. Funct. Mater.33 (2023)
2214412

MoS,/NiPS; 112 "y, 64 Adv. Mater. 34 (2022) 2203615

10:MoCo-VS, 63" 50 J. Mater. Chem. A, 10 (2022)
9067-9079.

N-MoS,-Ni3S,/NiS 700, 95.2 J. Mater. Chem. A, 10 (2022)
11755-11765.

NisMosC@NPC NWs/CC 215N 30.9 ChemSusChem 2018, 11, 2717 -
2723

FeCoNiMo HEA 250" 48.02 ACS Catal. 12 (2022)
10808-10817.

Mo-NiPx/NiSy 137, 1821, 49 Adv. Funct. Mater. 31 (2021)
2101532.

Mo-/Co-N-C 230 N1ooo | 47 Adv. Funct. Mater. 31 (2021)

2102285.
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446 Table S2.Comparison of the OER overpotentials in 1.0 M KOH between Co@Fea-MoO/MoP

447 and recent reported electrocatalysts.

448

Catalysts N 100 N 200 Tafel | References
(mV) (mV) slope
Co@Fe(sp-MoO/MoP 270 290 38 This work
NW-MnCo,0,/GDY/CC | 338", | 482"y, 111 Adv. Funct. Mater. 32 (2022)
2107179
Co30357Fp.13 430", 56 Appl. Catal. B Environ. 281 (2021)
119535
NiP,/NiSe, 250", | 3297, 71.65 | Appl. Catal. B Environ. 282 (2021)
1195842
CoszMo/CoMoO, 256", - 65.3 Chemical Engineering Journal 431
(2022) 133240
Co,P/CoNPC 326 - 78 Adv. Mater. 32 (2020) 2003649
NiSe,/CoSe;,-N 286" - 53 Adv. Mater. 32 (2020) 2000607
E-Mo—NiCoP-3 364100 Nano-Micro Lett. (2019)
MoOs/Ni-NiO - 347" | 60 Adv.Mater. 32 (2020) 2003414
MoS,/NiPS; 30n20 86 Adv. Funct. Mater. 34 (2023)
2214412.
NiC0,0,/Cos 47N 310,50 |55.1 | Small 16 (2020) 1906775.
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449

450 Table S3. EIS Nyquist plot fitting parameters of the synthesis catalysts in 1.0 M KOH

451

Materials R, (Q) C, (F) Re (Q) Qi (Q-s",n)
Co@PFesa-MoO/MoP |  1.96 0.0006217 0.68 0.0008523
Co@PFe(sa-MoOy 2.76 0.0008257 0.95 0.84
Co@MoO, 1.88 0.000896 1.09 0.0001357
Co NRs 2.53 0.0009587 1.89 0.00088
Co-OH NRs 3.024 0.0009877 2.16 0.0006938,0.58
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452
453
454

Table S4.Performance comparison of our developed AEMWE with other recently reported

AEMWEs.
Cathode catalyst Anode Condition AEMWE References
catalyst Perfomance

Co@Fesp) Co@Fesp) 1M KOH 0.5A cm™ This work

MoO/MoP MoO/MoP @25°C @2.11V

NiFeS@Ti;C, NiFeS@TisC, | 1M KOH @ | 0.4 Acm™2 @ | Appl. Catal. B 2023, 321,
55°C 1.85V 122039.

Pt/C NiCoFe-NDA |1 M KOH @ | 0.325 A cm= | Energy Environ. Sci. 2021,
50° C @18V 14, 6546.

Ru,P NFs IrO, 1MKOH®@ |1 A cm™? @ | Chem. Eng. J. 2021, 420,
50°C 1.86 V 130491.

MoO,/MoNi, HS-RuCo/NC | 1 M KOH 1 A cm? @ | Small 2023, 19, 2207611.

207V

NiFeCr-LDH Ag NP 1MKOH @ | 0.2 Acm™ @ | Small 2022, 18, 2200303.
40°C 221V

MoO,/Ni Ni foam 1MKOH @ | 0.55 A cm™ | J. Mater Chem. A 2023, 11,
60° C @2V 5789.

NiFeCo/ Nickel | NiFe;0,/ 1MKOH @ | 0.88 A cm™ | J. Mater. Chem. A 2022, 10,

Fiber Paper Stainless- 50°C @22V 8401.
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455

Steel

B,V-Ni,P NiFeOOH I1MKOH@ |1 A cm™ @ | Small 2023, 19, 2208076.
50°C 1.92

Ni-Co-S/CP IrO, 1MKOH @ | 1.7 Acm™2 @ | Int. J. Energy Res. 2021, 45,
50°C 24V 1918.
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