Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

Electronic Supplementary Information for

Stabilisation of Lanthanum Nickelate Electrocatalysts via Pt-doping for High Current Density Rechargeable Zinc-Air Battery

Wei Jian Sim,^a Mai Thanh Nguyen,^{b,*} Wathanyu Kao-ian,^c Pinit Kidkhunthod,^{c,d} Te-Wei Chiu,^c Soorathep Khaewhom,^c Ying-Chih Pu,^f and Tetsu Yonezawa^{b,c*}

^aGraduate School of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan

^bDivision of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan

^cDepartment of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Payathai Road Pathumwan, Bangkok 10330, Thailand

^dSynchrotron Light Research Institute, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand

^eDepartment of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 10608, Taiwan

^f Department of Materials Science, National Tainan University, Tainan 70005, Taiwan

Table of content

Figure S1. XRD patterns of LaNiO₃ (blue), LaNi_{0.95}Pd_{0.05}O₃ (orange), LaNi_{0.95}Pt_{0.05}O₃ (green), LaNi_{0.80}Pt_{0.20}O₃ (red). Patterns of rhombohedral LaNiO₃ (ICDD #033-0711), cubic LaNiO₃ (ICDD #033-0710) and platinum metal (ICDD #004-0802) included as reference.

Figure S2. Close-up of XRD patterns around (110) of LaNiO₃ (blue), LaNi_{0.95}Pd_{0.05}O₃ (orange), LaNi_{0.95}Pt_{0.05}O₃ (green), LaNi_{0.80}Pt_{0.20}O₃ (red). Patterns of rhombohedral LaNiO₃ (ICDD #033-0711) and cubic LaNiO₃ (ICDD #033-0710) included as reference.

Figure S3. Diffraction patterns and EDS spectra of the circled area on Figure 3. Top: LaNiO₃. Middle: LaNi_{0.95}Pd_{0.05}O₃. Bottom: LaNi_{0.95}Pt_{0.05}O₃. Cu signals are due to the use of copper TEM grid.

 $\textbf{Figure S4.} \ \ \text{HAADF image of (left to right)} \ \ LaNiO_{3}, \ LaNi_{0.95}Pd_{0.05}O_{3}, \ LaNi_{0.95}Pt_{0.05}O_{3}. \ \ LaNi_{0.80}Pt_{0.20}O_{3}$

Figure S5. Extended plot of ZAB cycling test with LaNiO₃, LaNi_{0.95}Pt_{0.05}O₃ and Pt/C IrO₂ included as reference. ZAB cycling tests for the perovskite catalysts were stopped after 43 cycles as discharging was no longer achieving 60 mA cm⁻².

Figure S6. Long-term stability test by CV for LaNiO₃. Cycle numbers from 1 to 5000 are indicated by the colours in the legend.

Figure S7. Long-term stability test by CV for LaNi_{0.95}Pt_{0.05}O₃. Cycle numbers from 1 to 5000 are indicated by the colours in the legend.

Figure S8. Long-term stability test by CV for reference catalyst $Pt/C + IrO_2$. Cycle numbers from 1 to 5000 are indicated by the colours in the legend.

Figure S9. OER LSV of LaNiO₃ (blue), LaNi_{0.95}Pt_{0.05}O₃(red) and Pt/C + IrO₂(green) before and after long-term stability tests.

^{*}Corresponding Author, email: mai nt@eng.hokudai.ac.jp, tetsu@eng.hokudai.ac.jp

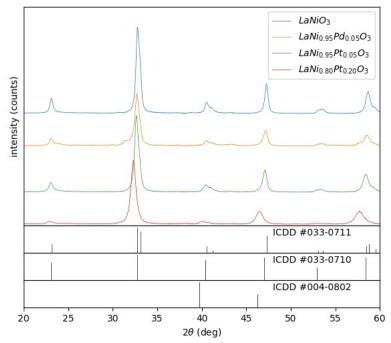
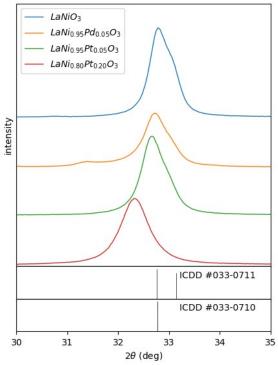
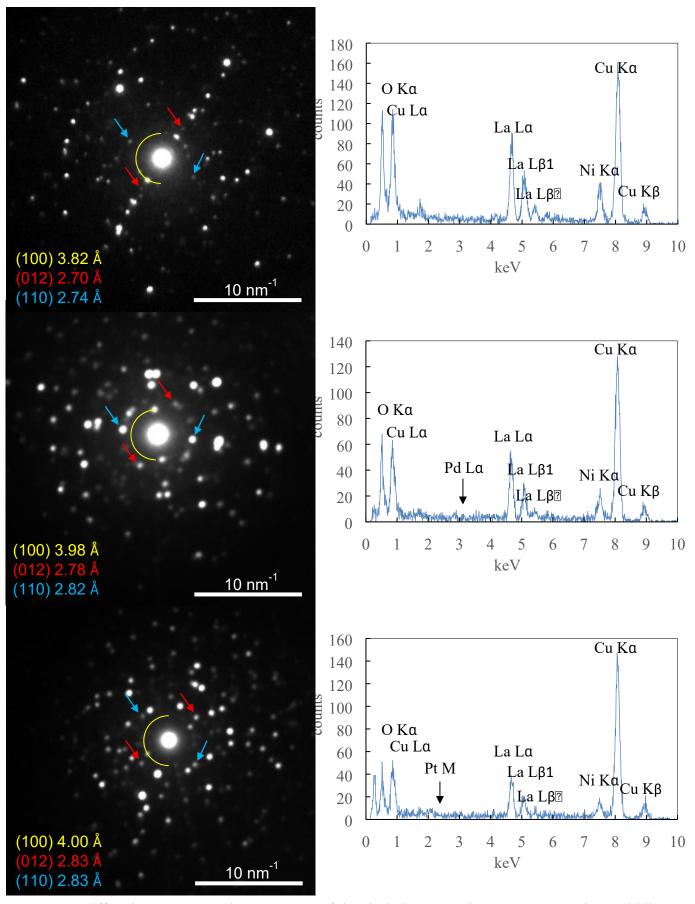
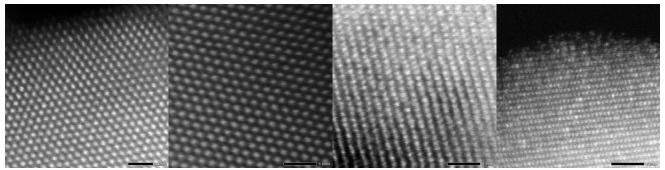

1. Goldschmidt Tolerance Factor

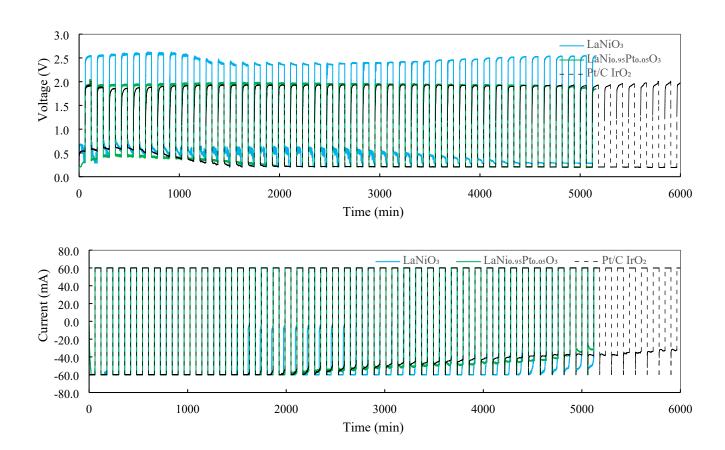
Table S1. Ionic radii and calculated Goldschmidt Tolerance Factor for each sample

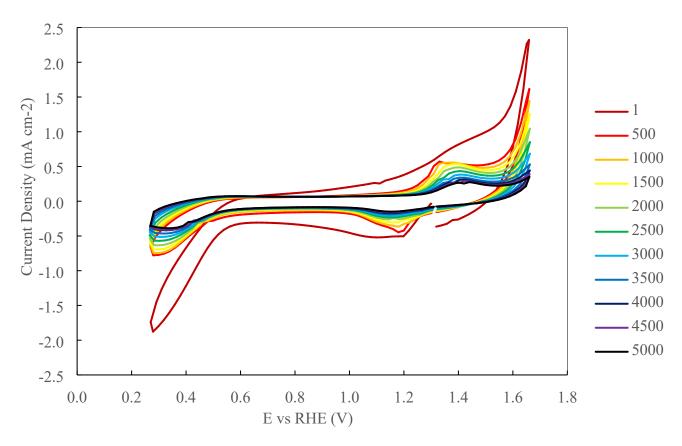

2. ORR Mechanism determination with Rotating Ring Disc Electrode (RRDE)

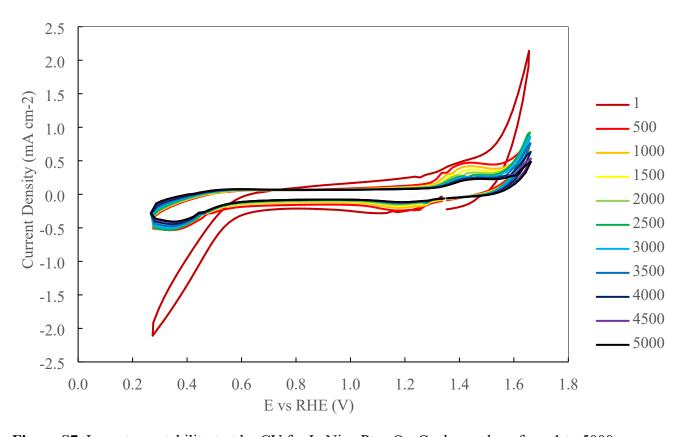
3. Fitted EXAFS parameters

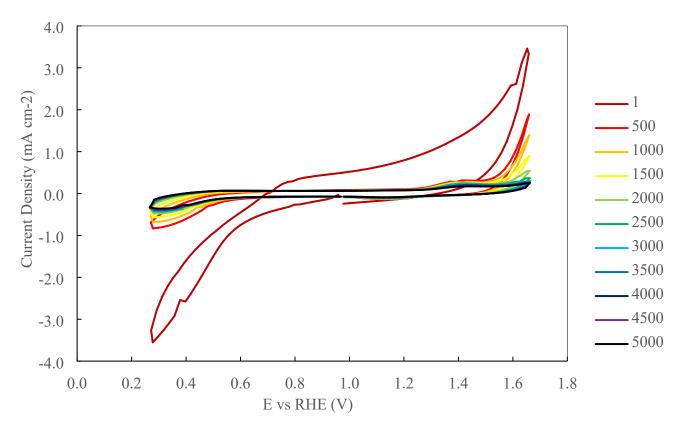

Table S2. Structural parameters by EXAFS fitting of LaNiO₃, LaNi_{0.95}Pt_{0.05}O₃ and LaNi_{0.95}Pd_{0.05}O₃ based on the Ni-O coordination number of 6 and La-O coordination number of 12.


Figure S1. XRD patterns of LaNiO₃ (blue), LaNi_{0.95}Pd_{0.05}O₃ (orange), LaNi_{0.95}Pt_{0.05}O₃ (green), LaNi_{0.80}Pt_{0.20}O₃ (red). Patterns of rhombohedral LaNiO₃ (ICDD #033-0711), cubic LaNiO₃ (ICDD #033-0710) and platinum metal (ICDD #004-0802) included as reference.


Figure S2. Close-up of XRD patterns around (110) of LaNiO₃ (blue), LaNi_{0.95}Pd_{0.05}O₃ (orange), LaNi_{0.95}Pt_{0.05}O₃ (green), LaNi_{0.80}Pt_{0.20}O₃ (red). Patterns of rhombohedral LaNiO₃ (ICDD #033-0711) and cubic LaNiO₃ (ICDD #033-0710) included as reference.


Figure S3. Diffraction patterns and EDS spectra of the circled area on Figure 3. Top: LaNiO₃. Middle: LaNi_{0.95}Pd_{0.05}O₃. Bottom: LaNi_{0.95}Pt_{0.05}O₃. Cu signals are due to the use of copper TEM grid.


Figure S4. HAADF image of (left to right) LaNiO₃, LaNi_{0.95}Pd_{0.05}O₃, LaNi_{0.95}Pt_{0.05}O₃. LaNi_{0.80}Pt_{0.20}O₃. Scale bar (bottom right of each image) is 1.0 nm.


Figure S5. Extended plot of ZAB cycling test with LaNiO₃, LaNi_{0.95}Pt_{0.05}O₃ and Pt/C IrO₂ included as reference. ZAB cycling tests for the perovskite catalysts were stopped after 43 cycles as discharging was no longer achieving 60 mA cm⁻².

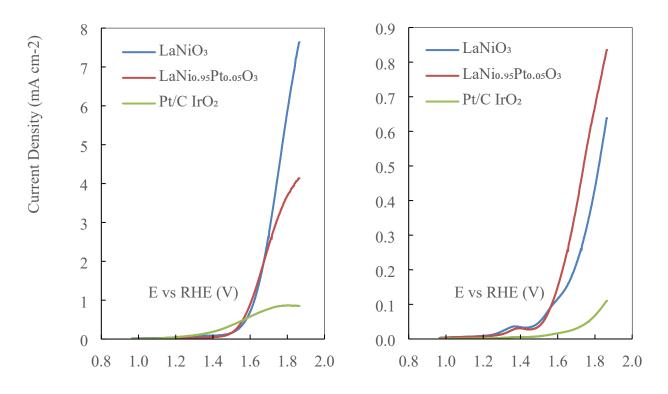

Figure S6. Long-term stability test by CV for LaNiO₃. Cycle numbers from 1 to 5000 are indicated by the colours in the legend.

Figure S7. Long-term stability test by CV for LaNi_{0.95}Pt_{0.05}O₃. Cycle numbers from 1 to 5000 are indicated by the colours in the legend.

Figure S8. Long-term stability test by CV for reference catalyst Pt/C + IrO₂. Cycle numbers from 1 to 5000 are indicated by the colours in the legend.

Figure S9. OER LSV of LaNiO₃ (blue), LaNi_{0.95}Pt_{0.05}O₃(red) and Pt/C + IrO₂(green) before and after long-term stability tests.

1. Goldschmidt Tolerance Factor

$$t = \frac{r_A + r_O}{\sqrt{2}(r_B + r_O)}$$

r_A is the radius of the A cation.

r_B is the radius of the B cation.

r_O is the radius of the anion (usually oxygen).

Table S1. Ionic radii and calculated Goldschmidt Tolerance Factor for each sample

Sample	$\mathbf{r}_{\mathbf{A}}$	r_{B1}	r_{B2}	r_{Bavg}	r_0	t
LaNiO ₃	1.36	0.56	-	0.56	1.40	0.9957
$LaNi_{0.95}Pd_{0.05}O_{3}$	1.36	0.56	0.615	0.56275	1.40	0.9943
$LaNi_{0.95}Pt_{0.05}O_3$	1.36	0.56	0.625	0.56325	1.40	0.9941
$LaNi_{0.80}Pt_{0.20}O_{3}$	1.36	0.56	0.625	0.573	1.40	0.9892

units: Å

2. ORR Mechanism determination with Rotating Ring Disc Electrode (RRDE)

In a rotating ring disc electrode (RRDE) setup, the selectivity of ORR mechanism is represented by the Electron Transfer Number, n, as follows:

$$n = \frac{4I_{\rm d}N}{I_{\rm d}N + I_{\rm r}}$$

where I_d is current at the disc electrode, I_r is current at the ring electrode, and N is the collection efficiency which is dependent on and specific to the geometry of the RRDE. Collection efficiency, N, has been determined in preliminary tests using potassium ferrocyanide([Fe(CN)₆]⁴⁻)/ferricyanide([Fe(CN)₆]³⁻) to be 0.48.

3. Fitted EXAFS parameters

Table S2. Structural parameters by EXAFS fitting of LaNiO₃, LaNi_{0.95}Pt_{0.05}O₃ and LaNi_{0.95}Pd_{0.05}O₃ based on the Ni-O coordination number of 6 and La-O coordination number of 12.

Sample	Path	N	S ₀ ²	$\sigma^{^2}$	E ₀	R
LaNiO ₃	Ni-O	6.0	0.602	0.00243	-2.516	1.92920
LaNi Pt O	Ni-O	6.0	0.601	0.00159	-2.742	1.93886
LaNi Pd O 3	Ni-O	6.0	0.571	0.00238	-3.888	1.93932

Sample	Path	N	S ₀ ²	σ^2	E ₀	R
LaNiO ₃	La-O	12.0	0.850	0.00211	1.353	2.98411
LaNi Pt O 3	La-O	12.0	0.750	0.00119	1.725	2.98765
LaNi Pd O 0.05 3	La-O	12.0	0.750	0.00415	-0.287	2.94876

 S_0^2 – Passive Electron Reduction Factor

 $[\]sigma^2$ – Mean-Square Displacement (also known as Debye-Waller factor) representing disorder

E₀ – Energy Shift

R – Bond Distance