Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Insights into the mechanism of enhanced methane low-temperature coupling conversion over the zeolite-encaged Ni-Pt catalysts

Lunan Wu^a, Xiu-Jie Yang^{a,*}, Jun Li^b, Weichao Chou^c, Bin Lou^{a,*}, Jing Wu^d, Nan Shi^a, Fushan Wen^a, Dong Liu ^{a,*}

- ^a State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong 266580, China
- ^b CNOOC Institute of Chemicals & Advanced Materials, Beijing 102200, China
- ^c Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- ^d PetroChina Liaohe Petrochemical Company, Panjin, Liaoning, 124000, China
- * Corresponding authors.

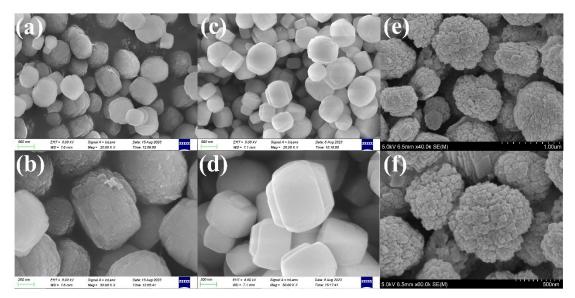
E-mail Address: yangxiujie@upc.edu.cn (X. Yang), louloulove@163.com (B. Lou), liudong@upc.edu.cn (D. Liu)

Experimental Section

Chemicals

Chloroplatinic acid hexahydrate (H₂PtCl₆·6H₂O, ~37.5 wt% Pt), colloidal silica (30 wt% in water), aluminum sulfate octadecahydrate (A1₂(SO₄)₃·18H₂O), ammonium chloride (NH₄Cl, 99.8%) and n-hexane (C₆H₁₄, 99%) were purchased from Macklin Biochemical Technology Ltd. Sodium hydroxide (NaOH, 99%), nickel nitrate hexahydrate (Ni(NO₃)₂·6H₂O, 98%), ethanediamine (EDA, 99%) and tetrapropylammonium hydroxide solution (TPAOH, 25 wt% in water) were obtained from Sinopharm Chemical Reagent Ltd. All the chemical reagents were used without any further treatment.

Characterization


X-ray diffraction (XRD) was detected using a Bruker D8 Advance X-ray diffractometer. Scanning electron microscope (SEM) images were recorded on a ZEISS MERLIN microscope. High-resolution transmission electron microscopy (HRTEM) and high-angle annular dark-field scanning transmission electron microscope (HAADF-STEM) images were taken on a Thermo

Scientific Talos F200X microscope. X-ray photoelectron spectroscopy (XPS) was measured on a Thermo Scientific K-alpha 250Xi spectrometer. Inductively coupled plasma-optical emission spectroscopy (ICP-OES) was tested on a Agilent 720ES spectrometer to analyze the chemical components of samples. The specific surface area, pore diameter and pore volumes of samples were calculated from nitrogen adsorption-desorption isotherms recorded on a ASAP 2020 micropore system. Hydrogen temperature programmed reduction (H2-TPR), methane temperature programmed reaction (CH₄-TPR) and temperature-programmed desorption of ammonia (NH₃-TPD) were acquired on a Micromeritics AutoChem II 2920 chemisorption analyzer. Temperature-programmed desorption of methane (CH₄-TPD) was conducted on a VDsorb-91i chemisorption analyzer. The ²⁹Si and ²⁷Al MAS NMR spectra of zeolite samples were performed on a Bruker Advance III 500 MHz spectrometer at 59.57 and 78.13 MHz, respectively. CO pulse adsorption was conducted on a ChemStar automated chemisorption analyzer to ascertain the dispersity of metals on the zeolite. The UV-vis diffuse reflectance spectra (UV-vis DRS) of zeolites were recorded on a Shimadzu UV-2700 ultraviolet-visible spectrophotometer in the range of 200-800 nm. Thermal gravimetric analyses (TGA)of spent catalysts were performed on a STA 449 F5 simultaneous thermal analyzer from 25 to 800 °C in air. Raman spectra were conducted using a Thermo Scientific DXR Raman spectrometer.

Fourier transform infrared (FT-IR) spectra of pyridine adsorption were conducted on a Bruker Tensor 27 infrared spectrometer. The samples were degassed at 300 °C for 1 h under vacuum condition. Next, pyridine was injected into reaction tank for 30min after cooled to room temperature and then heated to 100 °C, respectively. FT-IR spectra of pyridine adsorption were recorded in the range 400-4000 cm⁻¹. CO-diffuse reflectance infrared fourier transform spectra (CO-DRIFTS) were analyzed using a Nicolet iS50 infrared spectrometer. Typically, the catalysts were reduced in a flow of H₂ (25 mL/min) at 300 °C for 1 h. and then cooled to 25 °C in pure He (40 mL/min). Next, 5%CO/He (50 mL/min) was introduced into the cell for 30 min. The spectra were recorded at the set time after scavenging with pure He (30 mL/min).

The electrochemical impedance spectra of the catalyst were carried out using the CHI 660E electrochemical workstation. The Pt electrode and the saturated Ag/AgCl electrode were used as counter electrode and reference electrode. The preparation method of the working electrode is as follows: Firstly, 10 mg catalysts, ethanol and $50 \mu L 0.5\%$ Nafion solution are

mixed together and ultrasonic for 30 min. Then, the mixture is evenly spread on the ITO glass and dried at 60 °C to prepare the working electrode. The electrolyte solution was $0.2~M~Na_2SO_4$ aqueous solution. Electrochemical impedance spectra were tested with the frequency range of $10000\sim0.01~Hz$.

 $\textbf{Fig. S1} \ \text{SEM images of (a-b)} Ni-Pt@ZSM-5(100), (c-d)Ni-Pt@S-1 \ and \ (e-f)Ni-Pt/ZSM-5(25).$

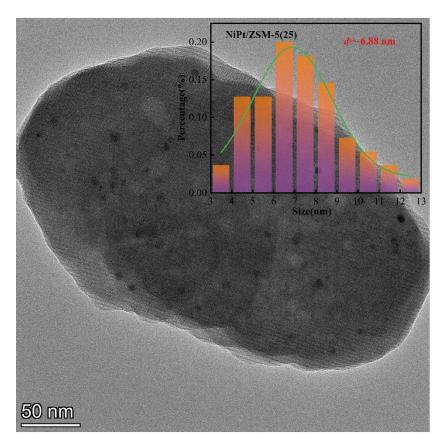


Fig. S2 HRTEM image of Ni-Pt/ZSM-5(25).

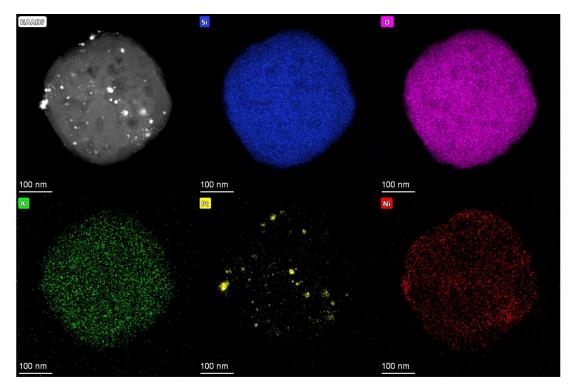


Fig. \$3 STEM images of Ni-Pt/ZSM-5(25).

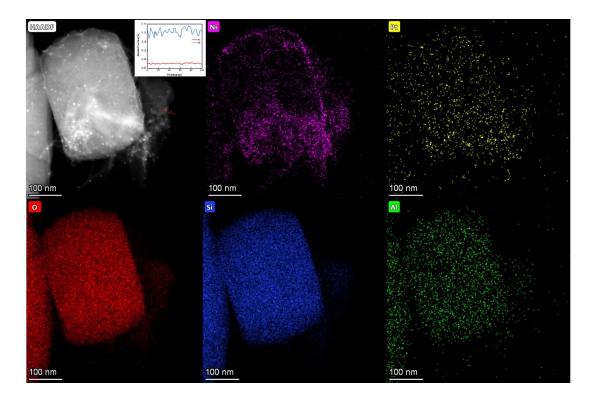


Fig. S4 Tomographic STEM images and line-scan EDS of Ni-Pt@ZSM-5(25).

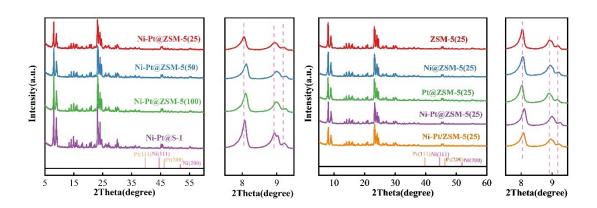


Fig. \$5 XRD patterns of as-prepared catalysts.

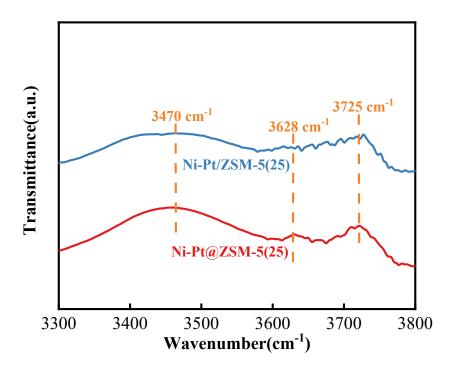


Fig. S6 IR spectra of OH stretching vibrations region

Fig. S7 ²⁷Al MAS NMR spectrum of Ni-Pt@ZSM-5(25)

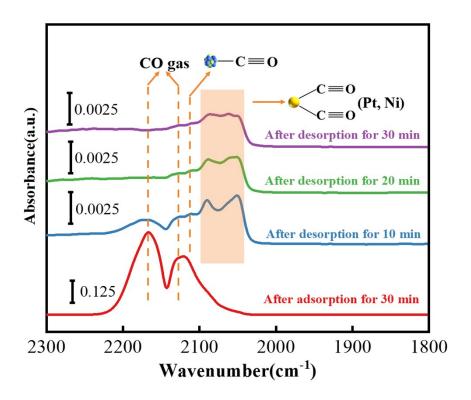
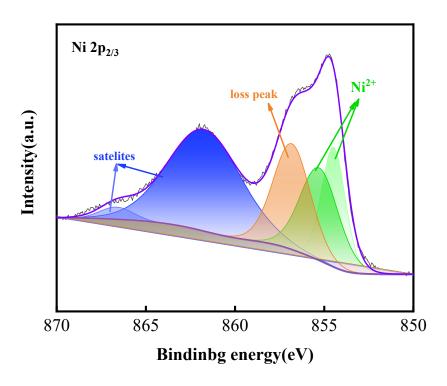



Fig. S8 CO-diffuse reflectance infrared Fourier transform spectra of Ni-Pt/ZSM-5(25).

Fig. S9 Ni 2p_{2/3} spectrum of NiO.

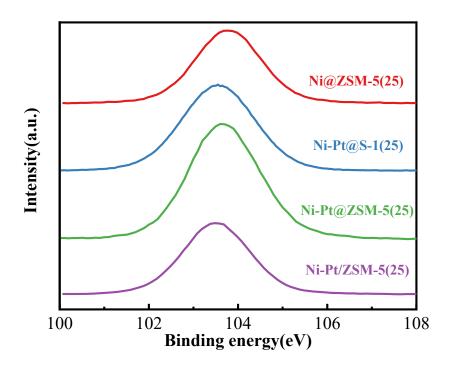


Fig. \$10 Si 2p spectra of as-prepared catalysts.

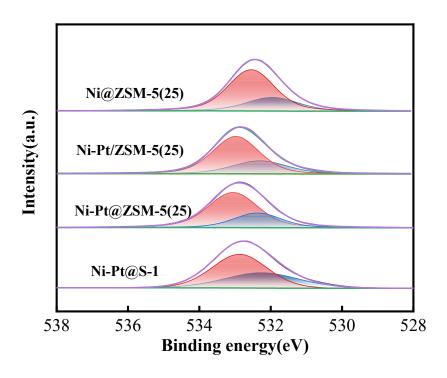


Fig. S11 O 1s spectra of as-prepared catalysts.

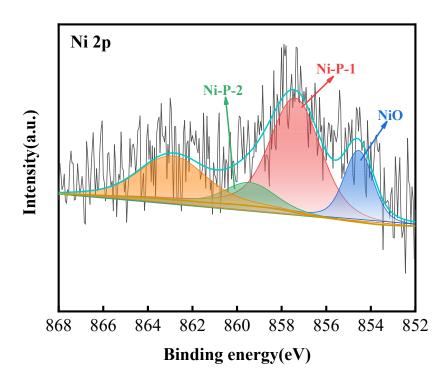


Fig. S12 (a) Ni 2p spectra of Ni-Pt@ZSM-5(25) without reduction.

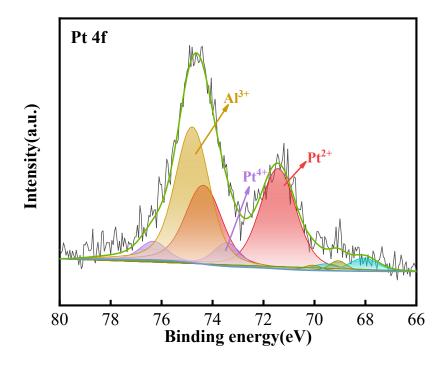


Fig. S13 Pt 4f spectrum of Ni-Pt@ZSM-5(25) without reduction.

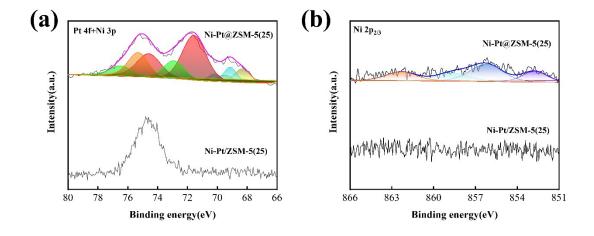
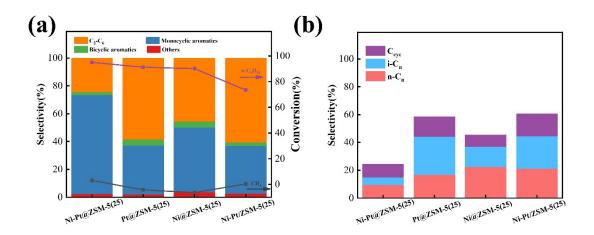
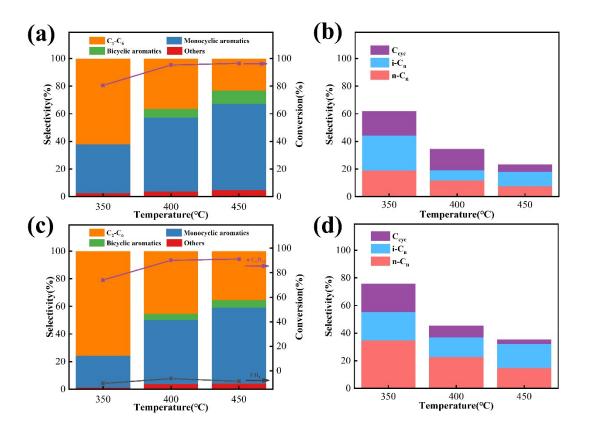




Fig. S14 (a) Ni 2p and (b) Pt 4f spectra of Ni-Pt@ZSM-5(25) and Ni-Pt/ZSM-5 after depth profiling.

Fig. S15 The co-aromatization performance of different catalysts at 400 °C. (a) The conversion of *n*-hexane and the detailed selectivity of C_1 - C_6 ; (b) The selectivity of gas products. (Reaction conditions: m(Catalysts)=0.2 g; p=1.0 MPa; m(n-hexane)=15 g; t=60 min; t=400 °C; t=400 °C;

Fig. S16 The conversion of *n*-hexane, the selectivity of total products and the detailed selectivity of C_1 - C_6 in the aromatization of *n*-hexane over Ni@ZSM-5(25) at different

temperature under different environment. (a-b) Nitrogen; (c-d) Methane. (Reaction conditions: m(Catalysts)=0.2 g; p=1.0 MPa; m(n-hexane)=15 g; t=60 min; C_{cyc} —cycloalkanes; $n-C_n$ —n-alkanes; $n-C_n$ —iso-alkanes)

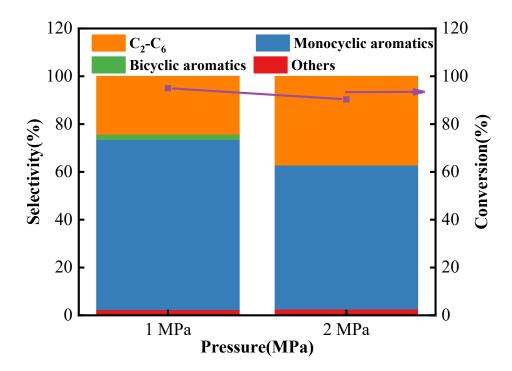


Fig. S17 The conversion of n-hexane and the selectivity of total products in the aromatization of n-hexane over Ni-Pt@ZSM-5(25) under different pressure. (Reaction conditions: $m(\text{Catalysts})=0.2 \text{ g}; p=1.0 \text{ MPa}; m(n-\text{hexane})=15 \text{ g}; t=60 \text{ min}; T=400 ^{\circ}\text{C}; C_{\text{cyc}}$

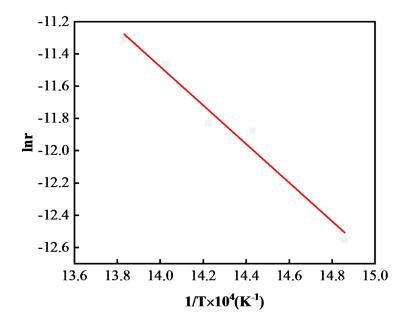


Fig. S18. Arrhenius plots of lnr vs. 1/T for methane over Ni-Pt@ZSM-5 (25).

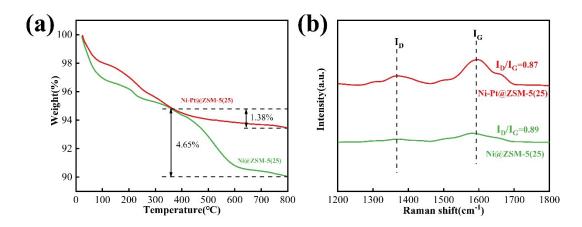


Fig. S19 (a)TG profiles and (b) Raman spectra of spent catalysts in the co-aromatization

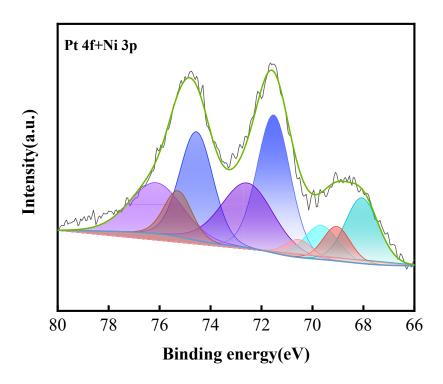


Fig. S20 Pt 4f spectrum of the spent Ni-Pt@ZSM-5(25).

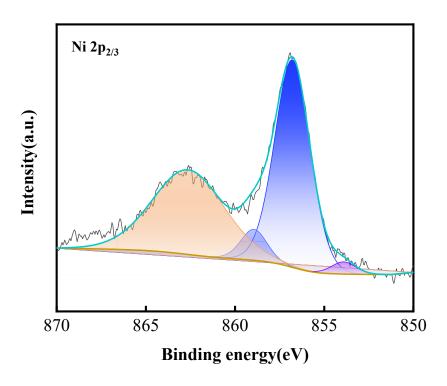


Fig. S21 Ni 2p spectrum of the spent Ni-Pt@ZSM-5(25).

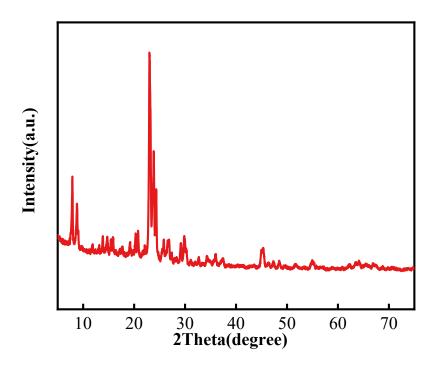


Fig. S22 XRD of the spent Ni-Pt@ZSM-5(25).

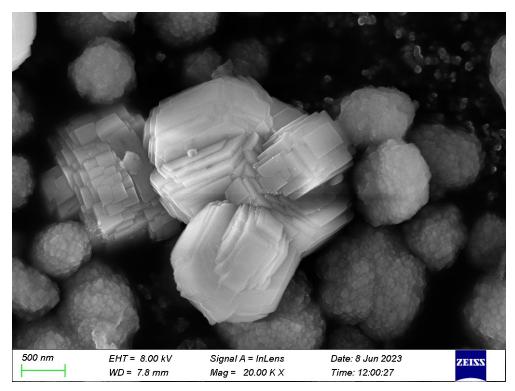


Fig. \$23 SEM of the spent Ni-Pt@ZSM-5(25).

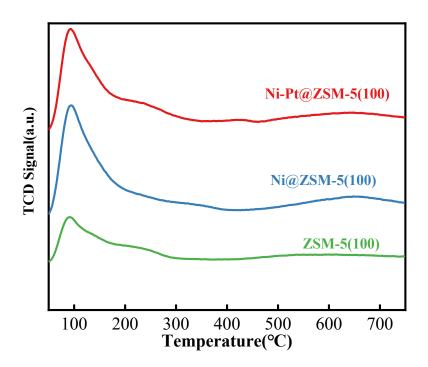


Fig. S24 NH₃-TPD of as-prepared catalysts.

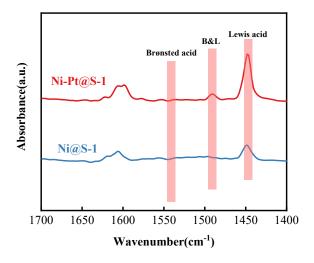
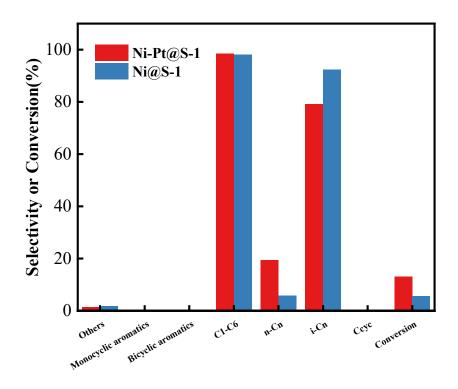



Fig. 25 FT-IR spectra of pyridine adsorption of Ni-Pt@S-1 and Ni@S-1.

Fig. S26 The aromatization of *n*-hexane performance of Ni-Pt@S-1 and Ni@S-1.

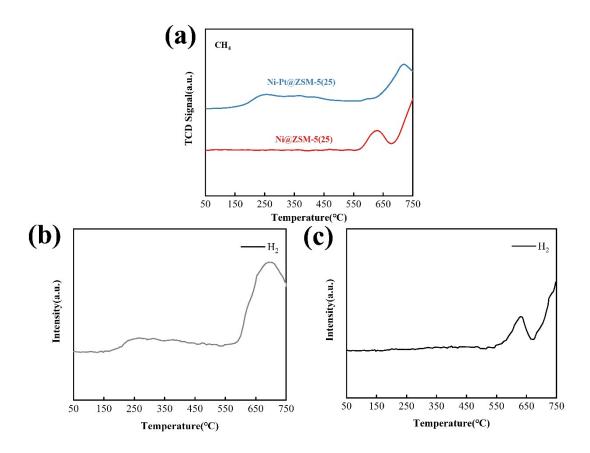


Fig. S27 (a) CH₄ signals on the catalysts during TPSR and H₂ signals on Ni-Pt@ZSM-5(25) and Ni@ZSM-5(25).

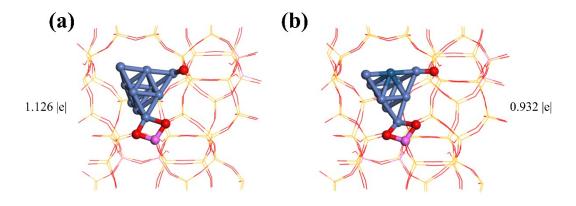


Fig. S28 the optimized structural models of (a) Ni@ZSM-5 and (b) Ni-Pt@ZSM-5.

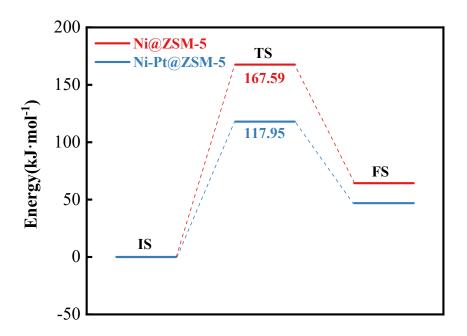


Fig. S29 Methane activation energy of different catalysts.

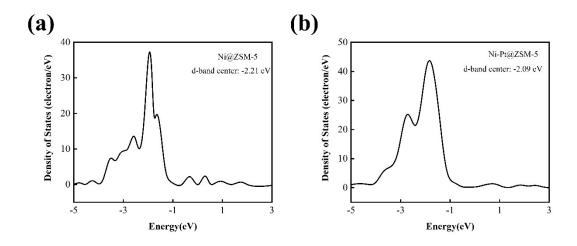


Fig. S30 D-band centers of (a) Ni@ZSM-5 and (b) Ni-Pt@ZSM-5.

Table S1Metal content and dispersity for the prepared catalysts.

Sample	Pt loading ^a (wt%)	Ni loading ^a (wt%)	Dispersity ^b (%)
Ni-Pt@ZSM-5(25)	0.43	0.96	28.6
Ni-Pt@ZSM-5(50)	0.37	0.98	27.9
Ni-Pt@ZSM-5(100)	0.36	1.03	27.5
Ni-Pt@S-1	0.31	1.07	29.3
Ni@ZSM-5(25)	-	1.04	25.6
Pt@ZSM-5(25)	0.32	-	26.2
Ni-Pt/ZSM-5(25)	0.35	1.06	13.2

^a Measured by ICP-AES.

^b Analyzed by CO pulse adsorption.

Table S2Metal content and dispersity for the prepared catalysts.

Sample	Su	Surface area (m ² ·g ⁻¹)		Pore volume(cm ⁻³ ·g ⁻¹)		
Sample	Totala	Microporeb	Externalb	Total ^c	Microporeb	Mesopore
Ni-Pt@ZSM-	408.302	330.486	77.816	0.227	0.139	0.088
5(25)	400.302	330.400	77.010	0.227	0.137	0.000
Ni-Pt@S-1	410.386	297.879	112.507	0.249	0.136	0.113
Pt@ZSM-5(25)	436.169	365.593	70.576	0.241	0.152	0.089
Ni-Pt/ZSM-5(25)	396.381	243.553	152.828	0.236	0.098	0.138
ZSM-5(25)	420.219	154.511	265.708	0.236	0.106	0.130

^aTotal surface area calculated using BET method.

^bMicropore surface area, external surface area and micropore pore volume calculated using the adsorbed volume at the relative pressure (P/P_0) of 0.99.

^cTotal pore volume confirmed by t-plot method.

Table S3Cell parameters of the prepared catalysts

Sample	a/Å	b/Å	c/Å	$Å^3$
Ni-Pt@S-1	18.6499	19.7512	13.4389	4950.33
Ni@ZSM-5(25)	19.8520	19.7665	13.4054	5260.34
Pt@ZSM-5(25)	19.4653	19.8912	13.3264	5159.82
Ni-Pt/ZSM-5(25)	18.8605	19.7609	13.3682	4982.33
Ni-Pt@ZSM-5(25)	18.8426	19.7811	13.4349	5007.55
Ni-Pt@ZSM-5(50)	18.5378	19.6876	13.4285	4900.93
Ni-Pt@ZSM-5(100)	19.0953	19.7131	13.2405	4984.09
ZSM-5 ^a	20.104	19.897	13.395	5358.12

^aObtained from the standard PDF card (JCPDS No 40-0003).

Table S4Results obtained by quantitative NMR analyses

	n_{Si}^{a}	$n_{\mathrm{Al}}{}^{\mathrm{a}}$	n _{Pt} ^a	$n_{\mathrm{Ni}}{}^{\mathrm{a}}$	$n_{Si(OSi)3(OM)}$	n _{Si(OSi)4} ^b	$(n_{Si(OSi)3(ONi)^+}$
Sample	(mmol/g	(mmol/g	(mmol/g	(mmol/g) ^b	(mmol/g	$n_{\mathrm{Si(OSi)3(OPt)}})/(n_{\mathrm{Ni}} +$
))))	(mmol/g))	n_{Pt})
Ni-Pt@S-1	5.72	0	0.016	0.182	0.603	5.117	3.05
Ni-							
Pt@ZSM-	5.76	0.22	0.017	0.180	1.122	4.638	1.23
5(25)							

^aAnalyzed by ICP-AES;

 $^{{}^{}b}n_{Si} \!\!= n_{Si(OSi)3(OM)} + n_{Si(OSi)4}; \; n_{Si(OSi)3(OM)} = n_{Si(OSi)3(OAl)} + n_{Si(OSi)3(ONi)} + n_{Si(OSi)3(OPt)}; \; n_{Si(OSi)3(OAl)} = n_{Si(OSi)3(ONi)} + n_{Si(OSi)3($

 $^{4*}n_{Al}$

Table S5. Co-aromatization performance of the as-prepared samples compared with other related catalysts

Catalyst	Reactant	Reaction condition	Methane conversi on(%)	Aromatics selectivity(%)	Ref.
Zn/ZSM-5	CH ₄ +CH ₃ OH	m(catalysts)= 2.0 g; T = 450 °C, molar ratio of CH ₃ OH to CH ₄ = 0.4 ± 0.03 , WHSV _{CH3OH} = 1.0 h ⁻¹ , keep the WHSV _{CH3OH} in CH ₃ OH feed and CH ₃ OH cofeed with CH ₄ constant, TOS = 20 min	14.8	56.86	[1]
Mo/ZSM-5	CH ₄ +CH ₃ OH	T = 700 °C, $P = 0.1$ MPa, and GHSV = 2000 mL (CH ₄)/(gcat h)	26.4	91.2	[2]
Zn/ZSM-5	CH ₄ + phenol	m(catalysts)=1.0 g; m(phenol)=0.1 g; P=2 MPa; T = 400 °C; Time on stream = 60 min	4.8	62.9	[3]
Ga-Ce-Pt/ZSM-5	CH ₄ + oleic acid	m(catalysts): m(acetic acid)=0.3:1; P=30bar; T = 400 °C; Time on stream = 40 min	3.2	50.8	[4]
Zn-Ga/ZSM-5	CH ₄ + acetic acid	m(catalysts)=1.0 g; m(acetic acid)=3.0 g; P=0.5 MPa; T = 400 °C; Time on stream = 40 min	<10%		[5]
0.8KPtSn@ MFI	CH ₄ +C ₆ H ₁₄	Feed (molar ratio): $CH_4:N_2 =$ 18: 5; $C_6H_{14}:N_2 = 3:20$; $CH_4:C_6H_{14}:N_2 = 18:3:2$; 271 $WHSV(CH_4) = 8 h^{-1}$; $WHSV(C_6H_{14}) = 7 h^{-1}$; $T = 600 ^{\circ}C$; Time on stream = 120 min	7.4	82.0	[6]
Ni-Pt@ZSM-5(25)	CH ₄ +C ₆ H ₁₄	m(catalysts)=0.2 g; m(C_6H_{14})=15 g; P=1.0 MPa; T = 450 °C; Time on stream = 60 min	10.89	73.40	This work

Table S6 The kinetic data of methane and n-hexane.

Temperature/K	Methane	1/T*10 ⁴ K ⁻¹	ln r	
remperature/K	conversion/%	1/1 10 K	111 1	
673	3.15	14.85884	-12.5528	
693	6.19	14.43001	-11.87726	
703	6.48	14.22475	-11.83148	
713	9.37	14.02525	-11.46269	
723	10.89	13.83126	-11.31235	

Table S7Adsorption energy of methane adsorbed on different catalysts.

Model	E _T /Ha	E _{CH4} /Ha	E _{T-CH4} /Ha	Eads/kJ·mol-1
Ni@ZSM-5	-46671.571	-40.457	-46712.104	-199.538
Ni-Pt@ZSM-5	-62501.308	-40.457	-62541.814	-128.650

Table S8Results of co-reaction of hexene and methane

Temperature (°C)	Reactants	Methane conversion (%)	Selectivity of aromatics (%)
250	C_6H_{12}	0	25.63
350	$CH_4 + C_6H_{12}$	1.28	0
400	C_6H_{12}	0	33.28

	$CH_4 + C_6H_{12}$	3.87	30.28
450	C_6H_{12}	0	45.97
450	$CH_4 + C_6H_{12}$	5.43	47.42

Reaction conditions : m(Catalysts)=0.2 g; p=1.0 MPa; m(n-hexene)=15 g; t=60 min

Table S9Results of co-reaction of benzene and methane

Tommomotymo		Selectivity of	Selectivity of
Temperature (°C) Methane conversi	Methane conversion (%)	toluene	coke
		(%)	(%)
350	0	0	100
400	0	0	100
450	0.13	0.88	99.12

Reaction conditions : m(Catalysts)=0.2 g; p=1.0 MPa; m(benzene)=15 g; t=60 min

References

- [1] Z. X. Xi, B. J. Zhou, B. B. Jiang, J. D. Wang, Z. W. Liao, Z. L. Huang, Y. R. Yang, Efficient conversion of methane to aromatics in the presence of methanol at low temperature, Molecular Catalysis, 2019, 475, 110493.
- [2] Y. Liu, D. F. Li, T. Y. Wang, Y. Liu, T. Xu, Y. Zhang, Efficient Conversion of Methane to Aromatics by Coupling Methylation Reaction, ACS Catalysis, 2016, 6(8), 5366-5370.
- [3] A. Wang, D. Austin, P. He, M. Ha, V. K. Michaelis, L. J. Liu, H. Qian, H. B. Zeng, H. Song, Mechanistic Investigation on Catalytic Deoxygenation of Phenol as a Model Compound of Biocrude Under Methane, ACS Sustainable Chemistry & Engineering, 2019, 7(1), 1512-1523.
- [4] J. S. Jarvis, Z. F. Li, S. J. Meng, H. Song, Methane assisted catalyst synthesis and catalytic conversion of oleic acid, Journal of Materials Chemistry A, 2022, 10(36), 18671-18678.
- [5] A. G. Wang, D. Austin, A. Karmakar, G. M. Bernard, V. K. Michaelis, M. M. Yung, H. B. Zeng, H. Song, Methane Upgrading of Acetic Acid as a Model Compound for a Biomass-Derived Liquid over a Modified Zeolite Catalyst, ACS Catalysis, 2017, 7(5), 3681-3692.
- [6] B. Liu, F. Wang, X. M. Dou, P. F. Li, H. W. Xiang, Y. Yang, P. He, Co-aromatization of methane and hexane over Pt encapsulated in ZSM-5 zeolite and the electronic effect of K promoters, Science China-Chemistry, 2024, 67(3), 1017-1027.