Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

Supporting Information for

Integration of chemical component control and a pillared parallel structure for efficient water electrolysis

Chengjie Wu, a Xuesong Liu, a Kuan Deng, a Wen Tian, a, * Junyi Jia, b, *

^a School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China

^b State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China

* Corresponding author. E-mail address

Junyi Ji, E-mail: junyiji@scu.edu.cn

Wen Tian, E-mail: tianwen591@scu.edu.cn

S1 Chemicals and materials

Dopamine hydrochloride (DA-HCl, AR 98%), tris(hydroxymethyl) aminomethane (Tris, AR 99%), hexamethylenetetramine (HMT, 99%), potassium hexacyanoferrate $(K_3[Fe(CN)_6],$ AR 99%), potassium hexacyanocobaltate (K₃[Co(CN)₆], AR 99%) and potassium hydroxide (KOH, AR 95%) were purchased from Aladdin. Nickle nitrate hexahydrate (Ni(NO₃)·6H₂O, AR 98%), (H₂NCONH₂, AR), ammonium fluoride (NH₄F, AR), anhydrous ethanol, and hydrochloric acid (HCl, AR 35-37%) were purchased from Chengdu Chron Chemicals Co., Ltd. Nickel foam (NF, 99.8%) was purchased from Chengdu Taiyu Gas Co., Ltd. The commercial IrO₂/Ti electrodes was purchased from Kunshan Yiwanlin Electronic Technology Co., Ltd. for electrochemical tests. All chemical reagents in the experiment were utilized directly without purification.

S2 Fabrication of the composites

Synthesis of Ni(OH)₂/NF-D

First, Ni Foam (NF) was treated with ethanol, hydrochloric acid (1 M), and deionized (DI) water to remove the surface oxides and organic molecules. Then, Ni(OH)₂ nanosheet arrays with disordered alignment (Ni(OH)₂/NF-D) was prepared by hydrothermal method. Ni(NO₃)₂·H₂O (2.9 g), hexamethylenetetramine (HMT) (2.8 g) were dissolved into 70 mL of DI water under magnetic stirring. Subsequently, the NF and aqueous Ni(NO₃)₂/HMT solution were transferred to a Teflon-lined stainless-steel autoclave and heated at 100 °C for 4 h. After naturally cooling to ambient temperature, the products were cleaned with ethanol and deionized water, and dried at 60 °C for 6 h.

Synthesis of NiO-FeO/NF-P, NiO-CoO/NF-P and Ni₂P/NF-P

The as-prepared NiFe PBA/NF-P or NiCo PBA/NF-P samples were placed in a tubular furnace and subjected to thermal treatment under a continuous flow of high-purity argon gas (50 sccm). The temperature was ramped from room temperature to 350 °C at a rate of 2 °C min⁻¹, followed by annealing at 350 °C for 3 h. After the heat treatment, the furnace was allowed to cool naturally to room temperature. The resulting products were denoted as NiO-FeO/NF-P and NiO-CoO/NF-P, respectively.

Synthesis of Ni₂P/NF-P

The obtained Ni(OH)₂/NF-P sample was placed at the downstream end of a tubular furnace, while 100 mg of NaH₂PO₂·H₂O was positioned at the upstream end, with a separation distance of approximately 5 cm between the two. The phosphorization was conducted under a continuous flow of high-purity argon gas (50 sccm). The temperature was increased from room temperature to 350 °C at a heating rate of 2 °C min⁻¹ and maintained at 350 °C for 3 h. After the reaction, the furnace was allowed to cool naturally to room temperature. The resulting product was denoted as Ni₂P/NF-P.

S3 Materials Characterization

The morphology and microstructure of the catalysts were characterized by scanning electron microscope (SEM, JEOL JSM 7610F), energy dispersive X-ray spectroscopy (EDS), and transmission electron microscopy (TEM, FEI Tecnai G20). The crystalline structures and chemical valence states were identified by X-ray diffraction (XRD, Cu Kα radiation, Rigaku, SmartLab) and X-ray photoelectron spectroscopy (XPS, PHI5000 Versa spectrometer). The Raman was performed on a confocal Raman spectrometer (Renishaw, InVia Qontor) using an excitation of 532 nm laser.

S4 Electrochemical measurement

Electrochemical measurements were performed with a CHI 760E electrochemical workstation (CH Instruments, Inc.) at room temperature unless stated otherwise. A three-electrode configuration was employed, including a working electrode (the prepared materials), reference electrode (saturated Hg/HgO), and a counter electrode (graphite rod). The electrochemical characterizations were conducted in an electrolyte of 1 M KOH (pH = 14). The relevant RHE potential was calculated following the Nernst equation: $E_{RHE} = E_{Hg/HgO} + 0.059 \times pH + 0.098 \text{ V}$. All electrochemical curves were recorded after activating the catalysts with cyclic voltammetry (CV) at a scan rate of 50 mV·s⁻¹ (0.924 –1.624 V vs. RHE for OER and UOR) until a stable state was reached.

To observe the change of redox peak in the process of polarization, OER and UOR activity was assessed by CV at a scan rate of 2 mV·s⁻¹ with iR correction. The overpotential (η) for OER was calculated by $\eta_{OER} = E_{RHE}$ - 1.23 V, while E_{RHE} was obtained from the cathode polarization curve. The correction is carried out in accordance with E=E_{RHE}-IR, where I is the corresponding current and R is the solution resistance obtained in the EIS figure.

The Tafel plots were obtained by plotting as overpotential (η) versus the logarithm of current density $(\log j)$ based on polarization curves.

The Tafel slope is obtained by fitting the LSV (CV) curve as $\eta = a + b \cdot \log j$, η is the reversible hydrogen electrode potential, j is the current density, and b is the Tafel slope.

Electrochemical impedance spectroscopy (EIS) was tested from 0.1 Hz to 100 kHz at an overpotential of 330 mV (vs. RHE) for OER and UOR.

Assessment of turnover frequency (TOF): TOF (s⁻¹) was calculated as follows:

$$TOF = \frac{I}{\alpha Fn}$$

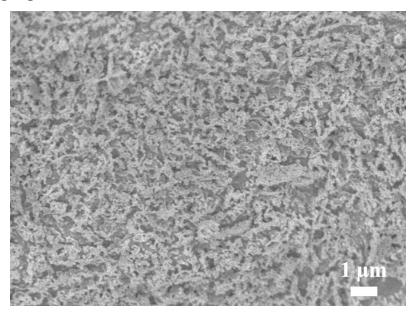
While I is the corresponding current (A) at a specific voltage in the LSV curve, α is the number of electrons transferred by the half-reaction (OER: α = 4), F is the Faraday constant (96485 C mol⁻¹), n is the number of active sites.

The number of active sites was determined by the CV curves recorded between –

0.2 and 0.6 V (vs. RHE) in PBS buffer solution (pH = 7.4) at a scan rate of 50 mV·s⁻¹. The number of active sites (n) was calculated at non-Faradaic regions according to the following equation:

$$n = \frac{Q}{\alpha F}$$

Where Q is the amount of charge transferred during the CV test.


The electrochemical active area (ECSA) was calculated according to following equation:

$$ECSA = \frac{C_{dl}}{C_s}$$

 C_s is the specific capacitance in an alkaline electrolyte and $C_{\rm dl}$ is obtained from the cyclic voltammetry within the non-Faradaic region at different scan rates. $C_s = 0.04$ mF·cm⁻².[1] The $C_{\rm dl}$ value equals the slope of the linear relationship between the scan rate and current density. The measured sweep speed was 10-100 mV·s⁻¹ and the CV measurement voltage windows were 0.924 - 1.024 (vs. RHE) for OER and UOR:

The stability was tested by the chronoamperometry method (i - t).

Supporting Figures

Fig. S1. SEM image of Ni₂P/NF-P.

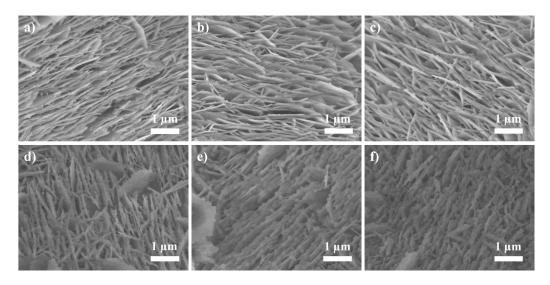


Fig. S2. SEM images of Ni(OH)₂/NF-P soaked in K_3 [Fe(CN)₆] solution for different time periods: (a) 4 h, (b) 8 h, (c) 12 h, (d) 16 h, (e) 20 h, (f) 24 h.

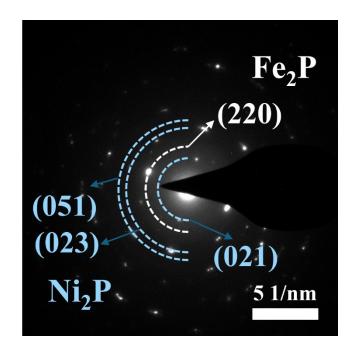


Fig. S3. SAED pattern of the Ni₂P-Fe₂P/NF-P.

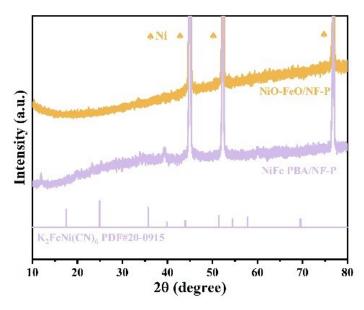


Fig. \$4. XRD patterns of the NiFe PBA/NF-P and NiO-FeO/NF-P.

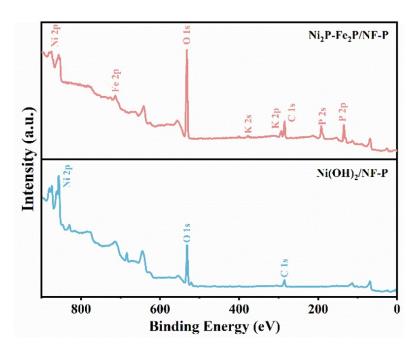


Fig. S5. The XPS full survey of Ni₂P-Fe₂P/NF-P and Ni(OH)₂/NF-P.

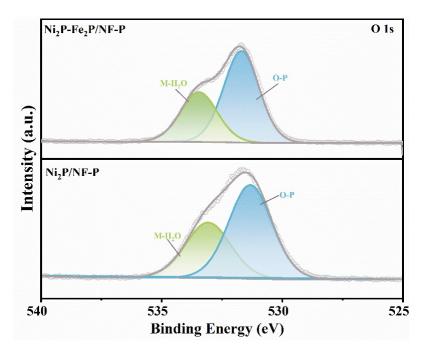


Fig. S6. The XPS spectrum of O 1s.

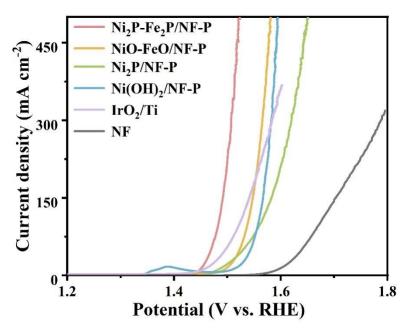


Fig. S7. Reverse scan LSV curves with iR compensation.

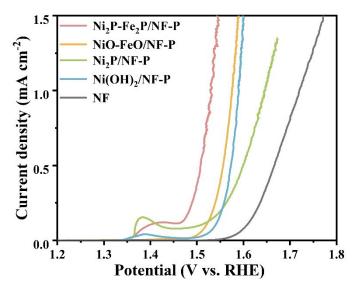


Fig. S8. ECSA-normalized LSV curves for OER corresponding to Fig. 3a.

Fig. S9. Active material loading mass-normalized LSV curves for OER corresponding to **Fig. 3a**.

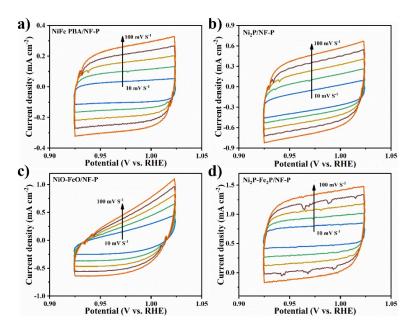
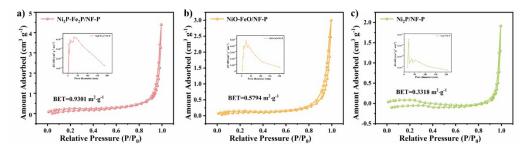
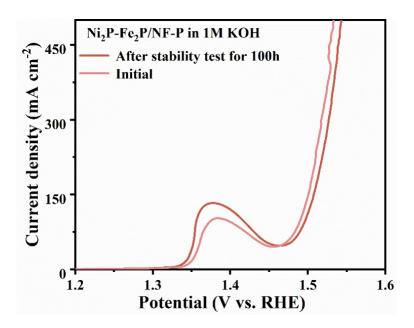




Fig. S10. CV curves of (a) NiFe PBANF-P, (b) Ni₂P/NF-P, (c) NiO-FeO/NF-P, (d) $Ni_2P\text{-Fe}_2P/NF\text{-P}.$

Fig. S11. Adsorption-desorption isotherms and pore size distribution (inset) of the Ni₂P-Fe₂P/NF-P, NiO-FeO/NF-P and Ni₂P/NF-P.

The BET measurement for the as-prepared composites was also investigated. As the active materials are anchored on the nickel foam surface, the calculated specific surface area remains within relatively low values. Typically, the Ni₂P-Fe₂P/NF-P exhibits a higher BET surface area (0.93 m² g⁻¹) than the control samples (0.33 m² g⁻¹ for Ni₂P/NF-P and 0.58 m² g⁻¹ for NiO-FeO/NF-P). When considering the various loading mass and the NF substrate (1.61, 1.58, 1.03 and 38.23 mg cm⁻² for Ni₂P-Fe₂P/NF-P, NiO-FeO/NF-P, Ni₂P/NF-P and pure NF, respectively), the ECSA values are almost proportional with the physical surface area. Moreover, as the ECSA values are evaluated at the non-faradaic region, the ECSA values are mainly corresponded to the accessible physical surface area.

Fig. S12. LSV curves of Ni_2P -Fe $_2P/NF$ -P before/after 100 h stability test at 500 mA cm⁻² for OER.

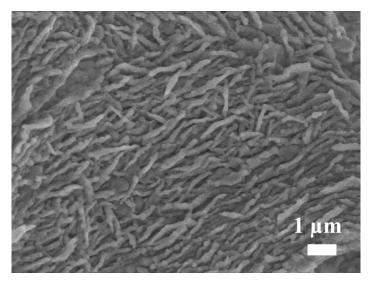
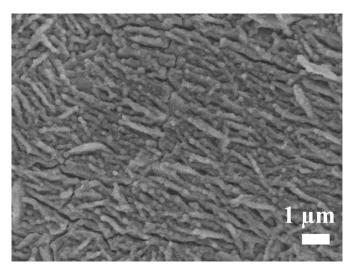
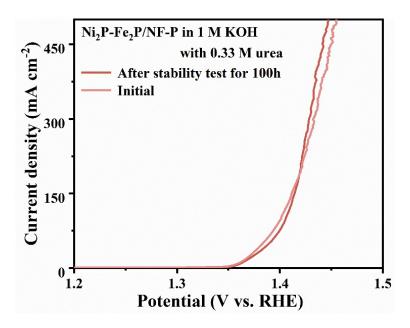
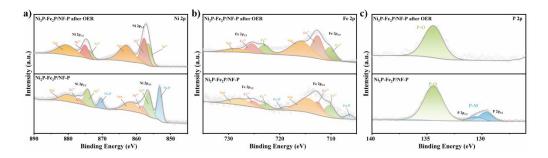
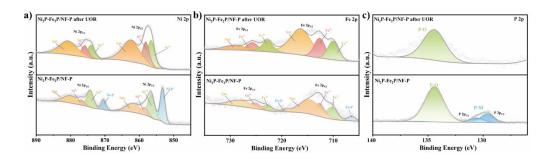


Fig. S13. SEM image of Ni_2P - Fe_2P/NF -P after stability test at 500 mA cm⁻² for OER.


Fig. S14. SEM images of Ni_2P - Fe_2P/NF -P after stability test at 500 mA cm⁻² for UOR.

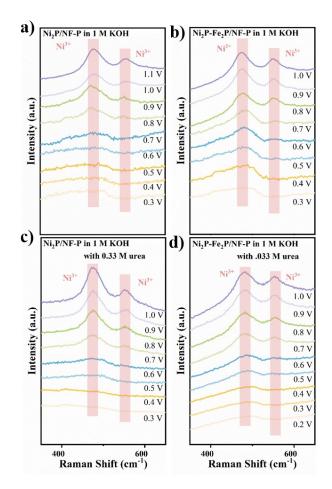

Fig. S15. LSV curves of Ni_2P -Fe $_2P/NF$ -P before/after stability test at 500 mA cm⁻² for UOR.

Fig. S16. XPS (a) Ni 2p, (b) Fe 2p and (f) P 2p spectra of Ni₂P-Fe₂P/NF-P before/after OER test.

Fig. S17. XPS (a) Ni 2p, (b) Fe 2p and (f) P 2p spectra of Ni₂P-Fe₂P/NF-P before/after UOR test.

Fig. S18. In situ Raman spectra of (a, c) Ni₂P/NF-P and (b, d) Ni₂P-Fe₂P/NF-P during OER and UOR under various potentials (vs. Ag/AgCl), respectively.

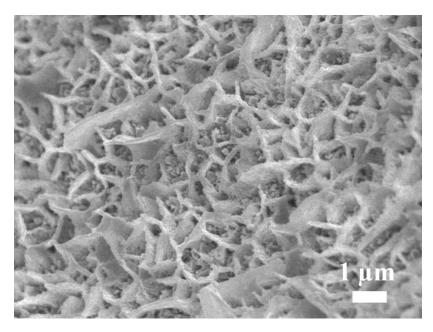
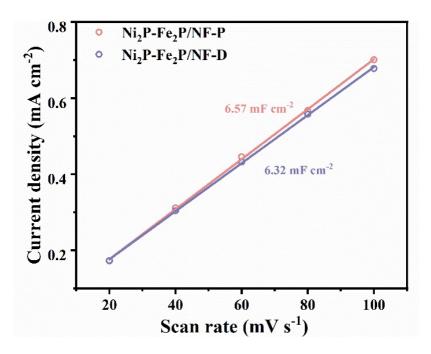



Fig. S19. SEM images of Ni₂P-Fe₂P/NF-D.

Fig. S20. C_{dl} values of the comparison of electrocatalytic OER Performance between Ni₂P-Fe₂P/NF-P and Ni₂P-Fe₂P/NF-D.

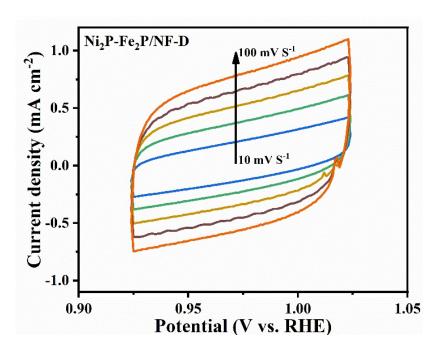


Fig. S21. CV curves of Ni₂P-Fe₂P/NF-D.

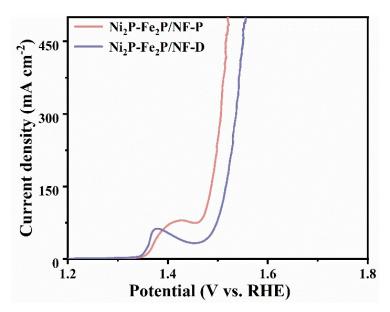


Fig. S22. LSV curves of the comparison of electrocatalytic OER Performance between Ni_2P - Fe_2P/NF -P and Ni_2P - Fe_2P/NF -D.

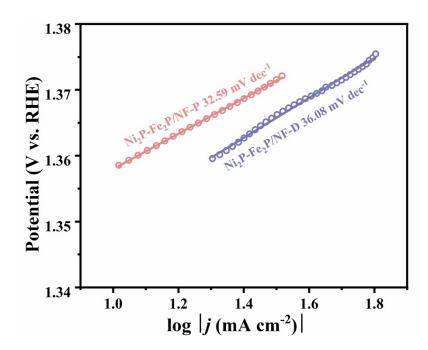


Fig. S23. Tafel plots of the comparison of electrocatalytic OER Performance between Ni_2P -Fe $_2P/NF$ -P and Ni_2P -Fe $_2P/NF$ -D.

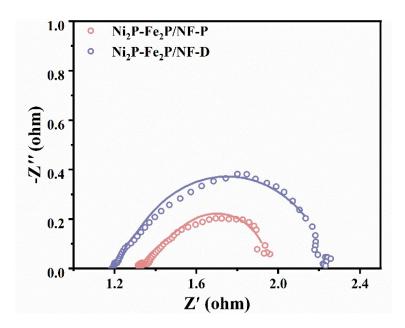
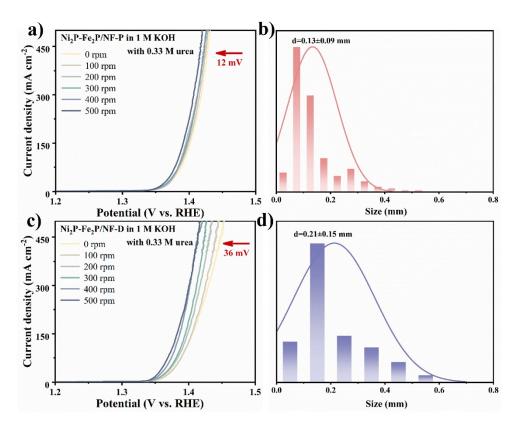
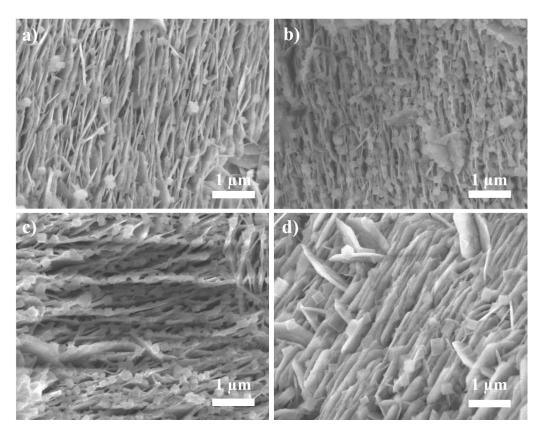




Fig. S24. EIS plots of the comparison of electrocatalytic OER Performance between $Ni_2P\text{-}Fe_2P/NF\text{-}P \ and \ Ni_2P\text{-}Fe_2P/NF\text{-}D.$

Fig. S25. LSV curves of (a) Ni₂P-Fe₂P/NF-P and (c) Ni₂P-Fe₂P/NF-D acquired at different stirring speeds in 1 M KOH with 0.33 M urea; The corresponding size distribution statistics for bubbles of (b) Ni₂P-Fe₂P/NF-P (d) Ni₂P-Fe₂P/NF-D.

Fig. S26. SEM images of NiCo PBA/NF-P prepared by immersion in potassium cobalticyanide solutions of different concentrations: (a) 10 mg/mL, (b) 20 mg/mL, (c) 30 mg/mL, (d) 40 mg/mL

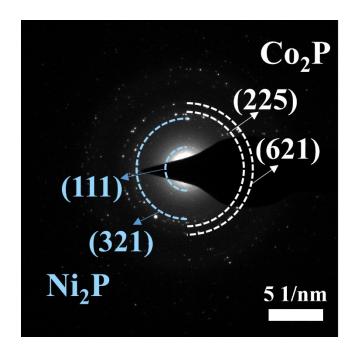


Fig. S27. SAED pattern of the Ni₂P-Co₂P/NF-P.

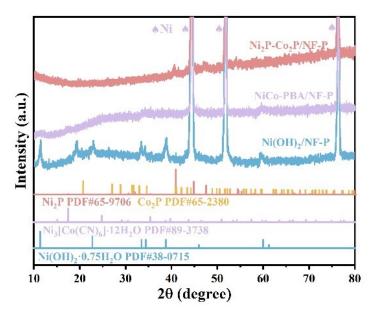


Fig. S28. XRD patterns of $Ni(OH)_2/NF-P$, $NiCo\ PBA/NF-P$ and $Ni_2P-Co_2P/NF-P$.

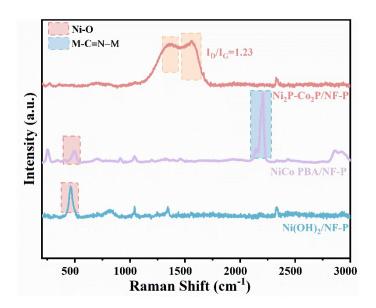


Fig. S29. Raman spectra of various samples.

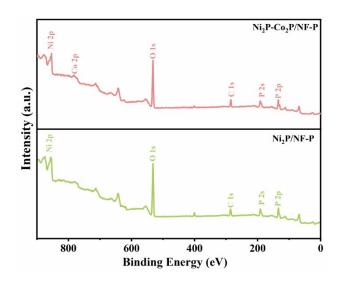


Fig. S30. XPS full survey of Ni_2P - Co_2P/NF -P and Ni_2P/NF -P.

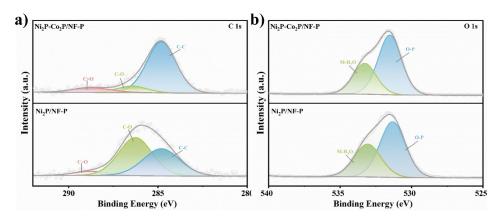


Fig. S31. XPS (a) C 1s; (b) O 1s spectrum of Ni_2P - Co_2P/NF -P and Ni_2P/NF -P.

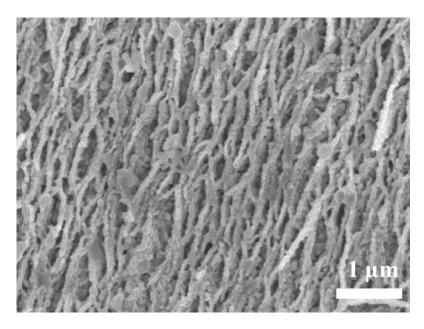


Fig. S32. SEM image of Ni_2P - Co_2P/NF -P after stability test at 500 mA cm⁻² for HER.

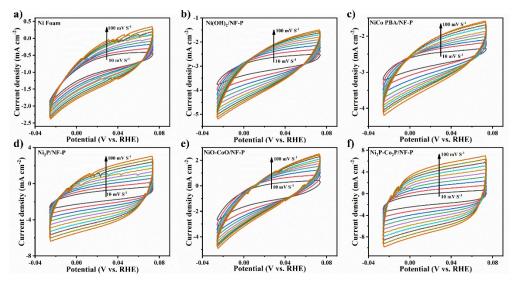
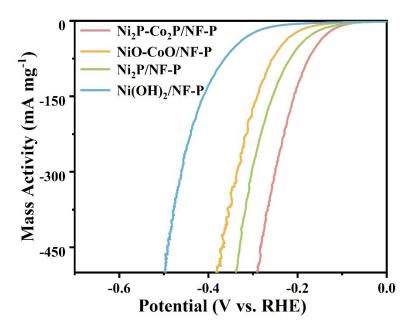



Fig. S33. CV curves of the as-prepared materials.

Fig. S34 Active material loading mass-normalized LSV curves for HER corresponding to **Fig. 7a**.

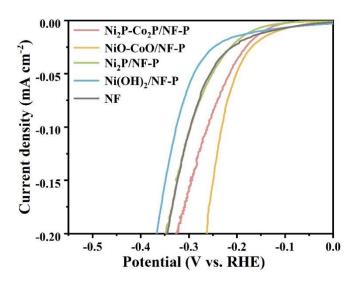
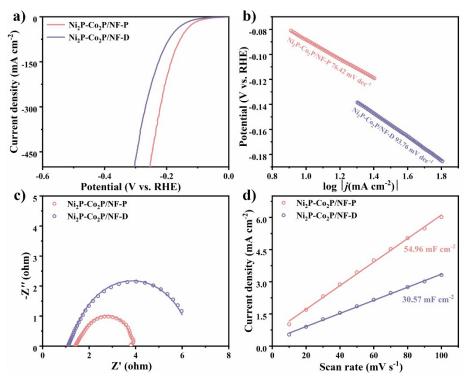



Fig. S35. ECSA-normalized LSV curves for HER corresponding to Fig. 7a.

Fig. S36. (a) LSV curves, (b) Tafel plots, (c) EIS plots, (d) corresponding C_{dl} values of the comparison of electrocatalytic HER Performance between Ni₂P-Co₂P/NF-P and Ni₂P-Co₂P/NF-D.

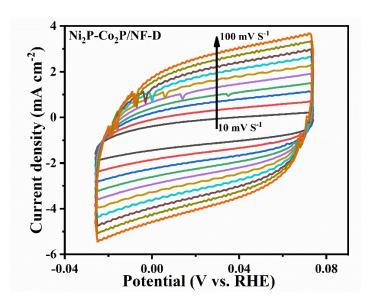


Fig. S37. CV curves of Ni_2P - Co_2P/NF -D.

Supporting Tables

Table S1. Fitting values of EIS plots corresponding to Fig. 3f.

	NF	Ni(OH) ₂ /NF-P	NiFe PBA/NF-P	Ni ₂ P/NF-P	NiO-FeO/NF-P	Ni ₂ P-Fe ₂ P/NF-P
	(Ω)	(Ω)	(Ω)	(Ω)	(Ω)	(Ω)
R_s	1.83	1.68	1.93	1.51	1.36	1.32
R_p	12.73	0.09	1.66	7.01	0.34	0.02
R_{ct}	47.03	2.23	8.53	11.13	1.68	0.39

Table S2. Fitting values of EIS plots corresponding to Fig. S17.

$Ni_2P-Fe_2P/NF-D(\Omega)$					
$R_{\rm s}$	1.22				
R_p	0.02				
R _{ct}	1.0				

Table S3. Fitting values of EIS plots corresponding to Fig. 7d.

	NF	Ni(OH) ₂ /NF-P	NiCo PBA/NF-P	Ni ₂ P/NF-P	NiO-CoO/NF-P	Ni ₂ P-Co ₂ P/NF-P
	(Ω)	(Ω)	(Ω)	(Ω)	(Ω)	(Ω)
$R_{\rm s}$	1.69	1.47	1.41	1.54	1.54	1.41
R_p	12.97	5.06	7.99	0.53	1.23	0.49
R _{ct}	43.75	67.9	57.37	5.36	11.08	1.97

Table S4. Active material loading mass of the as-prepared electrocatalysts.

Electrode materials	Catalyst loading (mg cm ⁻²)		
Ni(OH) ₂ /NF-P	1.63		
NiFe PBA/NF-P	1.8		
NiO-FeO/NF-P	1.58		
Ni ₂ P-Fe ₂ P/NF-P	1.61		
Ni ₂ P/NF-P	1.03		
NiCo PBA/NF-P	1.75		
NiO-CoO/NF-P	1.56		
Ni ₂ P-Co ₂ P/NF-P	1.58		

Table S5. Comparison of the OER parameters of the Ni_2P - Fe_2P/NF -P with NiFe-based or pillar-parallel structured electrocatalysts at various current densities in 1 M KOH electrolyte.

Electrode materials	Overpotential (mV) @j (mA cm ⁻²)	Tafel slope (mV dec ⁻¹)	Stability j (mA cm ⁻²)@t (h)	Reference
Ni ₂ P-Fe ₂ P/NF-P	226@20 246@100 290@500	32.59	500@100	This work
p-Co ₉ S ₈ /NC/CF	276@10 398@100	75	-	[1]
NiCoP cage	255@10 290@100	44.5	10@100	[2]
Ni(OH) ₂ PNAs	206@10	-	1000@50	[3]
NiFe NNG	292@10	48	50@5.5	[4]
P-CoO _X /NiFe LDHs	220@10	38.7	100@500	[5]
R ₆₀ -NiFe-LDH/NF	298@500	39.5	500@1500	[6]
$(Ni_{0.83}Fe_{0.17})_2P/NF$	215@10 247@50	31.84	10@20	[7]
Ru/NiFe- LDH/CuO	211@10 300@500	48	500@500	[8]
p-NiFeMo/NF	274@100	57.1	500@72	[9]
GD-NiFe LDH/S	234@10 270@100	35.5	100@100	[10]

Table S6. Comparison of the UOR parameters of the Ni₂P-Fe₂P/NF-P with NiFebased or pillar-parallel structured electrocatalysts at various current densities in 1 M KOH with 0.33 M urea electrolyte.

Electrode materials	Potential (V) @j (mA cm ⁻²)	Tafel slope (mV dec ⁻¹)	Stability j (mA cm ⁻²)@t (h)	Reference
Ni ₂ P-Fe ₂ P/NF-P	1.35@20 1.37@100 1.40@500	21.55	500@100	This work
A-NiFeV/NF	1.33@20 1.39@100	-	100@50	[11]
NiFeSbP/GB	1.50@100	-	100@20	[12]
O-NFF	1.409@100 1.47@500	12.1	100@12	[13]
NiFeCoS _x @FeNi ₃	1.42@10	97	100@2	[14]
Ag@NiFe- LDH/NiFe ₂ O ₄	1.389@50	-	10@25	[15]
NiFe LDH-Ni ₃ S ₂	1.34@10	24	-	[16]
NiHCF/NF	1.39@100	16	100@100	[17]

Table S7. Comparison of the HER parameters of the Ni₂P-Co₂P/NF-P with NiCobased or pillar-parallel structured electrocatalysts at various current densities in 1 M KOH electrolyte.

Electrode materials	Overpotential (mV) @j (mA cm ⁻²)	Tafel slope (mV dec ⁻¹)	Stability j (mA cm ⁻²)@t (h)	Reference
Ni ₂ P-Co ₂ P/NF-P	112@20 168@100	76.42	500@100	This work
p-Co ₉ S ₈ /NC/CF	540@100	92	-	[1]
Fe-Co-O/Co@NC- mNS/NF	112@10 201@100	96	10@50	[18]
Ce _{0.10} -NiCoP	96@10 166@10 192@100	94.75	20@100	[19]
Ni ₂ P/(Co,Ni)OOH/ NF	169@100	123	10@36	[20]
(NiFe/NiCo)S@ NF	185@10	76	10@12	[21]
NiCo ₂ O ₄ @ NiCo(OH) ₂	121@10 306@100 691@500	83.2	200@100	[22]
NiCo _(nf) -P	199@100	112	1000@30	[23]
CoP@CoP@ (Co/Ni) ₂ P	147@10	68.06	10@30	[24]

Table S8. Comparison of the overall water splitting parameters of Ni_2P - Fe_2P/NF -P || Ni_2P - Co_2P/NF -P electrocatalysts at various current densities in 1 M KOH electrolyte.

Electrode materials	potential (V) @ j (mA cm ⁻²)	Stability j (mA cm ⁻²)@t (h)	Reference
Ni ₂ P-Fe ₂ P/NF-P Ni ₂ P- Co ₂ P/NF-P	1.557@20 1.77@100 2.234@500	500@100	This work
$NiFeCoS_x@FeNi_3 \parallel$ $NiFeCoS_x@FeNi_3$	1.54@10 1.80@100	-	[14]
$Ni-1T-MoS_2 \parallel Ni-1T-MoS_2$	1.54@10 1.82@50	-	[25]
Nb–Co ₄ N/NF \parallel Nb–Co ₄ N/NF	1.61@10 1.68@20	200@10	[26]
NiCoFe-LDH NiCoFe- LDH	1.56@10	100@18	[27]
CoFe-P/NF CoFe-P/NF	1.58@10 1.80@50	100@40	[28]
CoFe@NiFe-200/NF CoFe@NiFe-200/NF	1.59@10 1.77@100	10@24	[29]
B_{10} –FeCoNi-LDH@NF \parallel B_{10} –FeCoNi-LDH@NF	1.547@10 1.83@50	100@100	[30]
NiFeP-CNT@NiCo/CP NiCoP-CNT@NiCo/CP	1.58@10	10@100	[31]

References

- 1. Y. Zhao, T. Li, Q. Wang, Y. Ai, R. Hou, A. Habib, G. Shao, F. Wang and P. Zhang, Journal of Materials Chemistry A, 2024, 12, 23872-23879.
- 2. Y. Zhou, Y. Hu, S. Lu, D. Wang, D. Ma, X. Gong and Q. Yue, Advanced Functional Materials, 2024, 34, 2401195.
- 3. J. Kang, G. Liu, Q. Hu, Y. Huang, L.-M. Liu, L. Dong, G. Teobaldi and L. Guo, Journal of the American Chemical Society, 2023, 145, 25143-25149.
- Z. Lyu, S. Yu, M. Wang, P. Tieu, J. Zhou, Q. Shi, D. Du, Z. Feng, X. Pan, H. Lin,
 S. Ding, Q. Zhang and Y. Lin, Small, 2024, 20, 2308278.
- 5. H.-M. Xu, C.-J. Huang, H.-R. Zhu, Z.-J. Zhang, T.-Y. Shuai, Q.-N. Zhan, V. Y. Fominski and G.-R. Li, Small, 2024, 20, 2400201.
- 6. B. Wang, J. Chen, L. Luo, G. Huang, Q. Shi, Q. Wei, M. Shang and Q. Liu, Advanced Functional Materials, 2025, 35, 2505763.
- 7. Z. Wang, S. Liu, J. Du, Y. Xing, Y. Hu, Y. Ma, X. Lu and C. Wang, Green Chemistry, 2024, 26, 7779-7788.
- 8. Y. Yang, H. Gao, C. Zhu, W. Sun, J. Zeng, X. Wang and X. Tian, Advanced Functional Materials, 2025, n/a, e14599.
- 9. Y. Wei, L. Yi, R. Wang, J. Li, D. Li, T. Li, W. Sun and W. Hu, Small, 2023, 19, 2301267.
- 10. J. Zhang, Q. Chen, P. Zhao, A. Cai, X. Fan, W. Peng and Y. Li, Small, 2025, 21, 2409265.
- 11. H. Yang, L. Ge, J. Guan, B. Ouyang, H. Li and Y. Deng, Journal of Colloid and Interface Science, 2024, 653, 721-729.
- 12. H. Shooshtari Gugtapeh and M. Rezaei, ACS Applied Energy Materials, 2022, 5, 15689-15700.
- 13. J. Kim, M.-C. Kim, S. S. Han and K. Cho, Advanced Functional Materials, 2024, 34, 2315625.
- 14. J. Shen, Q. Li, W. Zhang, Z. Cai, L. Cui, X. Liu and J. Liu, Journal of Materials Chemistry A, 2022, 10, 5442-5451.
- 15. X. Zhang, J. Zhang, Z. Ma, L. Wang, K. Yu, Z. Wang, J. Wang and B. Zhao,

- Journal of Colloid and Interface Science, 2024, 665, 313-322.
- 16. Z.-H. Zhang, Z.-R. Yu, Y. Zhang, A. Barras, A. Addad, P. Roussel, L.-C. Tang, M. Naushad, S. Szunerits and R. Boukherroub, Journal of Materials Chemistry A, 2023, 11, 19578-19590.
- 17. G. Kalaiyarasan, D. Lee, J. W. Lee and M. J. Ko, ACS Applied Materials & Interfaces, 2024, 16, 69142-69152.
- 18. T. I. Singh, G. Rajeshkhanna, U. N. Pan, T. Kshetri, H. Lin, N. H. Kim and J. H. Lee, Small, 2021, 17, 2101312.
- 19. M. Zhang, H. Xu, H. Yang, X. Shang, M. Yuan, Y. Fu, Y. Xiao, S. Wang, X. Wang, B. Jia, S. Li and T. Ma, Small, 2025, 21, 2504837.
- 20. L. Zhang, Z. Wang, J. Zhang, Z. Lin, Q. Zhang, W. Zhong and G. Wu, Nano Research, 2023, 16, 6552-6559.
- 21. L. Fathyunes, C. Muilwijk and D. Brabazon, International Journal of Hydrogen Energy, 2024, 78, 622-633.
- 22. G. Chen, D. Chen, J. Huang, C. Zhang, W. Chen, T. Li, B. Huang, T. Shao, J. Li and K. K. Ostrikov, ACS Applied Materials & Interfaces, 2021, 13, 45566-45577.
- 23. Z. Xu, C.-L. Yeh, J.-L. Chen, J. T. Lin, K.-C. Ho and R. Y.-Y. Lin, ACS Sustainable Chemistry & Engineering, 2022, 10, 11577-11586.
- 24. H. Zhang, Y. Q. Wu, X. D. Wang, C. P. Li, Z. Y. Xiao, Y. R. Liu, Y. Deng, Z. J. Li and L. Wang, Chemical Engineering Journal, 2023, 463.
- 25. G. Wang, G. Zhang, X. Ke, X. Chen, X. Chen, Y. Wang, G. Huang, J. Dong, S. Chu and M. Sui, Small, 2022, 18, 2107238.
- 26. X. H. Chen, Q. Zhang, L. L. Wu, L. Shen, H. C. Fu, J. Luo, X. L. Li, J. L. Lei, H. Q. Luo and N. B. Li, Materials Today Physics, 2020, 15, 100268.
- 27. Y. Zhuang, S. Meng, Y. Wu, J. Li, X. Yang, C. Yuan, T. Peng and D. Guo, Journal of Colloid and Interface Science, 2025, 700, 138645.
- 28. D. Duan, D. Guo, J. Gao, S. Liu and Y. Wang, Journal of Colloid and Interface Science, 2022, 622, 250-260.
- 29. R. Yang, Y. Zhou, Y. Xing, D. Li, D. Jiang, M. Chen, W. Shi and S. Yuan, Applied Catalysis B: Environmental, 2019, 253, 131-139.

- 30. L. Ma, X. Li, G. Zhang, Y. Zhang, H. Dong, J. Liao, R. Han and L. Zhang, International Journal of Hydrogen Energy, 2025, 124, 251-262.
- 31. Z. Wang, C. Wei, X. Zhu, X. Wang, J. He and Y. Zhao, Journal of Materials Chemistry A, 2021, 9, 1150-1158.