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Experimental Procedures
Materials

The chemical regents used in present research involve JN-30 silica sol (30 wt%,
Qingdao Haiwan Chemical Co., Ltd), sodium aluminate (53 wt% Al,Os, 42 wt% Na,O,
Macklin), Tetraethylammonium hydroxide (TEAOH, 35 wt%, Macklin),
Tetraethylammonium chloride (TEACI, 98%, Macklin), Tetracthylammonium nitrate
(TEANO;, 98%, Macklin), sodium hydroxide (NaOH, 96%, Macklin), ammonium
chloride (NH4CI, 99 wt%, Tianjin Damao Chemical Reagent Co.), cobaltous nitrate
(Co(NO3),-6H,0, 99 wt%, Macklin), phenol (99.5%, Macklin), tert-butanol (AR,
Macklin), n-dodecane (AR, Macklin), cyclohexane (AR, Macklin), pyridine (AR,
Macklin), 2,4,6-trimethylpyridine (AR, Macklin), deionized water.
Catalyst characterization

The crystal structures of prepared zeolites were characterized by X-ray diffraction
(XRD) analyzer that was conducted on a Bruker-AXS D2 PHASER Advance
diffractometer with Cu Ka radiation. The morphology of the zeolites was observed by
a TDCLS-4800 scanning electron microscope (SEM). The amounts of silicon,
aluminum and cobalt in the zeolite materials were determined by inductively coupled
plasma optical emission spectroscopy (ICP-OES). The textural parameters of Beta
zeolites were measured by Micromeritics ASAP 2460 devices at 77 K, and zeolites
were pretreated under the condition of 473 K and vacuum for 6 h. The total surface area
of the resultant samples was determined by the Brunauer-Emmett-Teller (BET) model,
while the pore size distribution was obtained by the Barrett-Joyner-Halenda (BJH)
model based on N, desorption isotherm. The total density of acid sites was determined
by Fourier transform infrared spectroscopy with the probe molecules of pyridine, using
a Bruker VERTEX 70 spectrometer. The zeolites were firstly degassed at 723 K for 2
h before the measurements, then pyridine was adsorbed on the zeolites for 0.5 h at 298
K. Secondly, the temperature was raised to 423 K at 1 h to remove the weakly bound
pyridine molecules. Thirdly, the acid density of resultant zeolites was measured by
infrared spectroscopy at 32 scans and a resolution of 2 cm™! when these samples were
cooled to 298 K. In the Py-IR spectra, the characteristic peak of Breonsted acid and
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Lewis acid sites for zeolite are at 1545 cm! and 1455 cm’!, respectively. The molar
extinction coefficient of 2.22 cm pmol-! and 1.67 cm umol-! were used to calculate the
density of Bronsted acid sites and Lewis acid sites, respectively. In the FT-IR spectra
of adsorbed 2,4,6-trimethylpyridine, the characteristic peak of Bronsted acid sites is at
1636 cm™!, corresponding to a molar extinction coefficient of 10.1 cm pmol-'.! 2 In
addition, the acidity of obtained samples were also measured by temperature
programmed desorption of ammonia (NH3-TPD) on an AutoChem 2920 instrument
equipped with a thermal conductivity detector (TCD). The high-resolution 2’Al MAS
NMR characterizations were performed to determine the Al coordination environment
on a Bruker Avance Neo 400WB spectrometer equipped at a resonance frequency of
104.3 MHz. The measurements were performed on non-hydrated samples using a pulse
length of 3.84 pus and a power of 95 .91 W. The spectral data were fitted and analyzed
using the Mastrenova.15. Diffuse reflectance ultraviolet-visible (UV-vis) spectra of the
dehydrated Co-Beta-H, Co-Beta-C, and Co-Beta-N samples were measured against
BaSOy in the range of 200-600 nm on a Shimadzu UV37001 spectrometer. Before each
measurement, the hydrated Co-Beta-X samples were dehydrated for 3 h at 10-! Pa and
723 K in order to eliminate the influence of divalent cobalt species with H,O or
hydroxyl groups.?

Catalytic tests

The catalytic performances of resultant Beta zeolites in the alkylation of phenol
with tert-butanol were evaluated in a three-necked round-bottom flask under
atmospheric pressure at 353 K. In a typical reaction, 0.2 g of zeolite was employed, the
molar ratio of phenol and tert-butanol was 1:2. Specially, the cyclohexane was served
as the solvent, while n-dodecane was functioned as the internal standard substance. The
reaction mixture was periodically taken and analyzed by gas chromatograph equipped
with an HP-5 column and a flame ionization detector.

Subsequently, their stability and lifetime were further investigated through a fixed-
bed reactor, and a 10 mm diameter reactor tube was used. The reaction was carried out
under atmospheric pressure at 413 K. All Beta zeolite catalysts were pelletized to a size
of 20-40 mesh and activated at 673 K for 4 h prior to testing. The molar ratio of phenol
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to fert-butanol was 1:2 and a total weight hourly space velocity (WHSV) was 5 h™,
these products were collected every 2 h and analyzed by gas chromatography as
mentioned above. Prior to testing, all Beta zeolites were ion-exchanged three times at
353 K for 12 h, using 1.0 mol L-! NH4Cl aqueous solution, and these Beta zeolites were
transformed into H* form.# The conversion of phenol and the selectivity of 4-TBP were
calculated according to specific formulas?:

S %100% (1)
Ca0

A

Conversion of Phenol =(1—

Selectivity of 4-TBP =( Ma-1r )%x100% (2)

Nygpgp + 1 _rpp Y My gpp + 15 4 prpp Y My 6 prep + 1 46 18P

where Cy is the initial concentration of phenol in the mixtures (mmol L) and Cy is
the concentration of phenol after reaction at a certain moment (mmol L!). The nygpg,
N4-TBP, N2-TBP> 12.4-DTBP> M2,6-DTBP aNd 11 4 6.T7RP are the molar amounts of TBPE(zert-butyl
phenyl ether), 4-TBP (4-tert-butyl phenol), 2-TBP (2-fert-butyl phenol), 2,4-DTBP
(2,4-Di-tert-butyl phenol) 2,6-DTBP (2,6-Di-fert-butyl phenol) and 2,4,6-TTBP (2,4,6-

tri-fert-butyl phenol) in the reaction mixture, respectively.
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Figure S3. UV-vis spectra of different dehydrated Co-Beta zeolites.
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Table S1. Acid density of Beta zeolite catalysts

Acidity * (mmol g'!)
Catalyst
Weak acid sites ® Strong acid sites © Total acid sites
Beta-H 1.18 0.72 1.90
Beta-C 0.92 0.49 1.41
Beta-N 0.93 0.46 1.39

2 Measured by NH;-TPD.
b The density of weak acid sites are measured at 323-543 K.
¢ The density of strong acid sites are measured at 543-873 K.

4 The total density of acid sites = the density of weak acid sites + the density of strong acid sites.

Table S2. The distribution of Brensted acid sites in Beta zeolites

Btotala Ba&bb BcC
Catalyst Bagt/Brotal (%)
(mmol g') (mmol g') (mmol g')
Beta-H 0.141 0.107 0.034 76
Beta-C 0.123 0.073 0.050 59
Beta-N 0.116 0.058 0.058 50

2The concentration of total Brensted acid sites is measured by the Py-IR spectra.
b The concentration of Brensted acid sites in the channels along the a and b axis is determined by FT-IR spectra of adsorbed
2,4,6-trimethylpyridine.
¢ The concentration of Brensted acid sites in the channel along the ¢ axis is calculated by B, = Byota1 - Bagw .
Note: Pyridine molecules can enter into all channels of Beta zeolite along the @, b and ¢ axis to
determine the total Brensted acid sites of catalysts, while the 2,4,6-trimethylpyridine with a size of

6.2 x 5.6 A can only access the pore channels along the @ and b axis.

Table S3. Coke deposit of resultant Beta zeolites.

Catalyst sample soft coke @ hard coke ® Average coke rate ¢
weight (mg) (g/g° cat)x10-2 (g/g° cat)x10-2 (mg/g°.h! cat)
Beta-H 4.5 7.5 10.0 2.56
Beta-C 5.3 10.7 7.1 2.09
Beta-N 4.6 10.1 7.3 1.95

2 The weight loss from 423 to 593 K.
b The weight loss from 593 to 1073 K.

¢ Average coke rate = the weight of hard coke/time.
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