

1

Supporting Information

2

3 Tuning the distribution of Al atoms in the framework of Beta

4 zeolite and impact on the alkylation of phenol

5 **Zhuo Zhang^a, Huoyan Jiang^a, Yi Huang^c, Baoyu Liu^{*,a,b}**

6 ^aSchool of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006,
7 P.R. China

8 ^bGuangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200,
9 China

10 ^cSchool of Engineering, Institute for Materials & Processes, the University of Edinburgh, Edinburgh EH9 3FB,
11 United Kingdom

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27 Table of Contents

* Corresponding author, Email: baoyu.liu@gdut.edu.cn (Baoyu Liu)

1	
2	Experimental ProceduresS3
3	MaterialsS3
4	Catalyst characterizationS3
5	Catalytic testsS4
6	Figures and TablesS6
7	Figure S1. SEM images of Beta-H (a and b), Beta-C (c and d), Beta-N (e and f).S6
8	Figure S2. Nitrogen adsorption-desorption isotherms of the obtained Beta zeolites.S6
9	Figure S3. UV-vis spectra of different dehydrated Co-Beta zeolites.S7
10	Figure S4. Representation of Beta zeolite framework in the [010] axis with nine different T-sites substituted by Al^{3+} ion (Si yellow, Al red, O blue, H white).S7
11	
12	Figure S5. Product distributions with time-on-stream over (a) Beta-H, (b) Beta-C and (c) Beta-N, respectively.S8
13	
14	Figure S6. Thermogravimetric (TG) curves of various spent Beta zeolites.S9
15	Figure S7. Quantitative relationship between concentrations of different aluminum species
16	and Brønsted acid sites (BAS) and phenol conversion(all provided data were evaluated at 353
17	K and 1 h, with a ratio of phenol and <i>tert</i> -butanol to 2:1)S9
18	Table S1. Acid density of Beta zeolite catalysts.....S10
19	Table S2. The distribution of Brønsted acid sites in Beta zeolitesS10
20	Table S3. Coke deposit of resultant Beta zeolites.S10
21	ReferencesS11
22	
23	
24	
25	

1 Experimental Procedures

2 Materials

3 The chemical regents used in present research involve JN-30 silica sol (30 wt%,
4 Qingdao Haiwan Chemical Co., Ltd), sodium aluminate (53 wt% Al₂O₃, 42 wt% Na₂O,
5 Macklin), Tetraethylammonium hydroxide (TEAOH, 35 wt%, Macklin),
6 Tetraethylammonium chloride (TEACl, 98%, Macklin), Tetraethylammonium nitrate
7 (TEANO₃, 98%, Macklin), sodium hydroxide (NaOH, 96%, Macklin), ammonium
8 chloride (NH₄Cl, 99 wt%, Tianjin Damao Chemical Reagent Co.), cobaltous nitrate
9 (Co(NO₃)₂·6H₂O, 99 wt%, Macklin), phenol (99.5%, Macklin), *tert*-butanol (AR,
10 Macklin), n-dodecane (AR, Macklin), cyclohexane (AR, Macklin), pyridine (AR,
11 Macklin), 2,4,6-trimethylpyridine (AR, Macklin), deionized water.

12 Catalyst characterization

13 The crystal structures of prepared zeolites were characterized by X-ray diffraction
14 (XRD) analyzer that was conducted on a Bruker-AXS D2 PHASER Advance
15 diffractometer with Cu K α radiation. The morphology of the zeolites was observed by
16 a TDCLS-4800 scanning electron microscope (SEM). The amounts of silicon,
17 aluminum and cobalt in the zeolite materials were determined by inductively coupled
18 plasma optical emission spectroscopy (ICP-OES). The textural parameters of Beta
19 zeolites were measured by Micromeritics ASAP 2460 devices at 77 K, and zeolites
20 were pretreated under the condition of 473 K and vacuum for 6 h. The total surface area
21 of the resultant samples was determined by the Brunauer-Emmett-Teller (BET) model,
22 while the pore size distribution was obtained by the Barrett-Joyner-Halenda (BJH)
23 model based on N₂ desorption isotherm. The total density of acid sites was determined
24 by Fourier transform infrared spectroscopy with the probe molecules of pyridine, using
25 a Bruker VERTEX 70 spectrometer. The zeolites were firstly degassed at 723 K for 2
26 h before the measurements, then pyridine was adsorbed on the zeolites for 0.5 h at 298
27 K. Secondly, the temperature was raised to 423 K at 1 h to remove the weakly bound
28 pyridine molecules. Thirdly, the acid density of resultant zeolites was measured by
29 infrared spectroscopy at 32 scans and a resolution of 2 cm⁻¹ when these samples were
30 cooled to 298 K. In the Py-IR spectra, the characteristic peak of Brønsted acid and

1 Lewis acid sites for zeolite are at 1545 cm^{-1} and 1455 cm^{-1} , respectively. The molar
2 extinction coefficient of $2.22\text{ cm }\mu\text{mol}^{-1}$ and $1.67\text{ cm }\mu\text{mol}^{-1}$ were used to calculate the
3 density of Brønsted acid sites and Lewis acid sites, respectively. In the FT-IR spectra
4 of adsorbed 2,4,6-trimethylpyridine, the characteristic peak of Brønsted acid sites is at
5 1636 cm^{-1} , corresponding to a molar extinction coefficient of $10.1\text{ cm }\mu\text{mol}^{-1}$.^{1,2} In
6 addition, the acidity of obtained samples were also measured by temperature
7 programmed desorption of ammonia (NH₃-TPD) on an AutoChem 2920 instrument
8 equipped with a thermal conductivity detector (TCD). The high-resolution ²⁷Al MAS
9 NMR characterizations were performed to determine the Al coordination environment
10 on a Bruker Avance Neo 400WB spectrometer equipped at a resonance frequency of
11 104.3 MHz. The measurements were performed on non-hydrated samples using a pulse
12 length of $3.84\text{ }\mu\text{s}$ and a power of 95.91 W . The spectral data were fitted and analyzed
13 using the Mastrenova.15. Diffuse reflectance ultraviolet-visible (UV-vis) spectra of the
14 dehydrated Co-Beta-H, Co-Beta-C, and Co-Beta-N samples were measured against
15 BaSO₄ in the range of 200-600 nm on a Shimadzu UV3700i spectrometer. Before each
16 measurement, the hydrated Co-Beta-X samples were dehydrated for 3 h at 10^{-1} Pa and
17 723 K in order to eliminate the influence of divalent cobalt species with H₂O or
18 hydroxyl groups.³

19 **Catalytic tests**

20 The catalytic performances of resultant Beta zeolites in the alkylation of phenol
21 with *tert*-butanol were evaluated in a three-necked round-bottom flask under
22 atmospheric pressure at 353 K. In a typical reaction, 0.2 g of zeolite was employed, the
23 molar ratio of phenol and *tert*-butanol was 1:2. Specially, the cyclohexane was served
24 as the solvent, while *n*-dodecane was functioned as the internal standard substance. The
25 reaction mixture was periodically taken and analyzed by gas chromatograph equipped
26 with an HP-5 column and a flame ionization detector.

27 Subsequently, their stability and lifetime were further investigated through a fixed-
28 bed reactor, and a 10 mm diameter reactor tube was used. The reaction was carried out
29 under atmospheric pressure at 413 K. All Beta zeolite catalysts were pelletized to a size
30 of 20-40 mesh and activated at 673 K for 4 h prior to testing. The molar ratio of phenol

1 to *tert*-butanol was 1:2 and a total weight hourly space velocity (WHSV) was 5 h⁻¹,
2 these products were collected every 2 h and analyzed by gas chromatography as
3 mentioned above. Prior to testing, all Beta zeolites were ion-exchanged three times at
4 353 K for 12 h, using 1.0 mol L⁻¹ NH₄Cl aqueous solution, and these Beta zeolites were
5 transformed into H⁺ form.⁴ The conversion of phenol and the selectivity of 4-TBP were
6 calculated according to specific formulas²:

7

$$\text{Conversion of Phenol} = \left(1 - \frac{C_A}{C_{A,0}}\right) \times 100\% \quad (1)$$

$$\text{Selectivity of 4-TBP} = \left(\frac{n_{4-TBP}}{n_{TBPE} + n_{2-TBP} + n_{4-TBP} + n_{2,4-DTBP} + n_{2,6-DTBP} + n_{2,4,6-TTBP}} \right) \times 100\% \quad (2)$$

8

9 where $C_{A,0}$ is the initial concentration of phenol in the mixtures (mmol L⁻¹) and C_A is
10 the concentration of phenol after reaction at a certain moment (mmol L⁻¹). The n_{TBPE} ,
11 n_{4-TBP} , n_{2-TBP} , $n_{2,4-DTBP}$, $n_{2,6-DTBP}$ and $n_{2,4,6-TTBP}$ are the molar amounts of TBPE(*tert*-butyl
12 phenyl ether), 4-TBP (4-*tert*-butyl phenol), 2-TBP (2-*tert*-butyl phenol), 2,4-DTBP
13 (2,4-Di-*tert*-butyl phenol) 2,6-DTBP (2,6-Di-*tert*-butyl phenol) and 2,4,6-TTBP (2,4,6-
14 tri-*tert*-butyl phenol) in the reaction mixture, respectively.

15

16

17

18

19

20

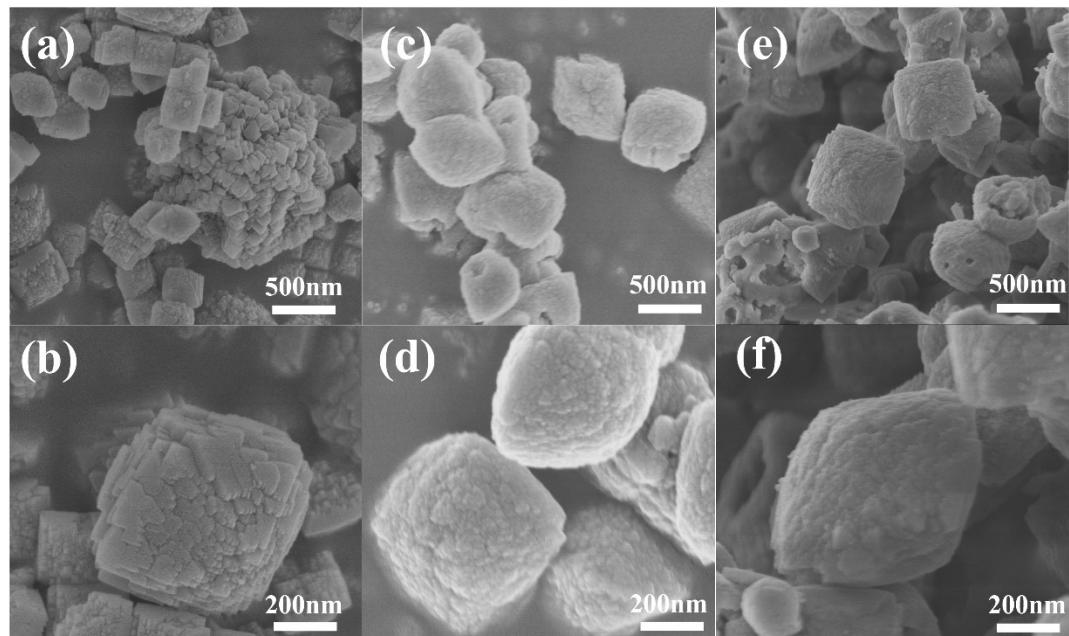
21

22

23

24

25

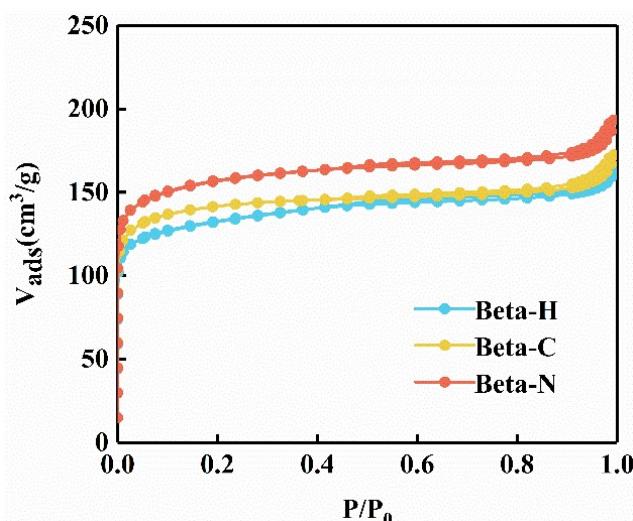

26

1

2 **Figures and Tables**

3

4

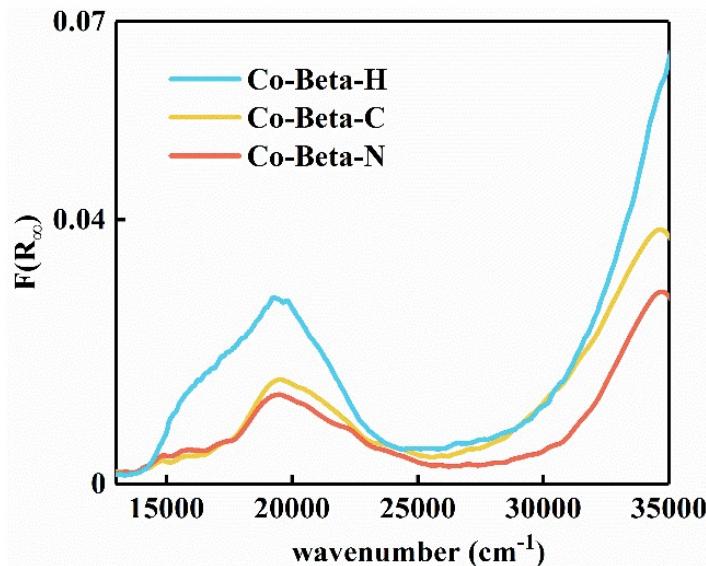


5

6 **Figure S1.** SEM images of Beta-H (a and b), Beta-C (c and d), Beta-N (e and f).

7

8

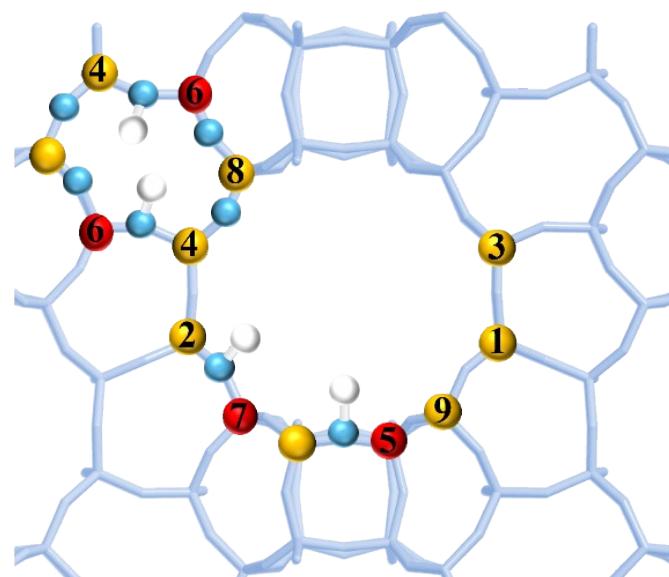

9

10 **Figure S2.** Nitrogen adsorption-desorption isotherms of the obtained Beta zeolites.

11

12

1
2
3



4

5 **Figure S3.** UV-vis spectra of different dehydrated Co-Beta zeolites.

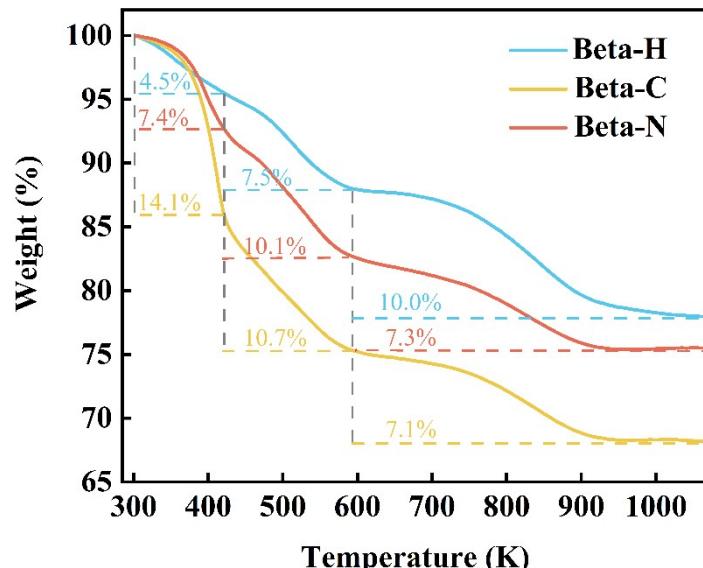
6 **Note:** The absorption intensity is calculated by the Schuster Kubelka Munk equation^{5, 6}, $F(R_\infty) =$
7 $(1-R_\infty)^2/2R_\infty$.

8

9
10 **Figure S4.** Representation of Beta zeolite framework in the [010] axis with nine different T-
11 sites substituted by Al^{3+} ion (Si yellow, Al red, O blue, H white).
12

1
2
3

4
5

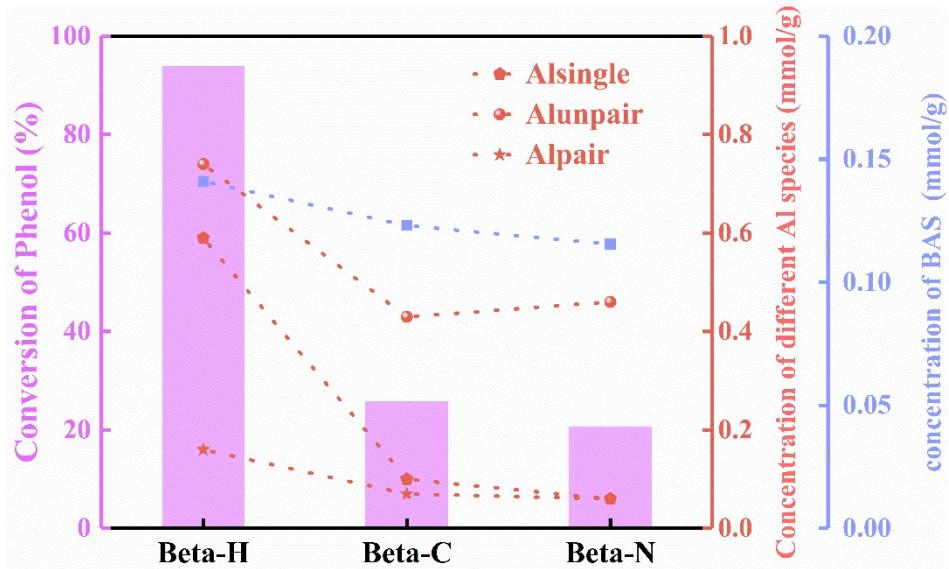

6

7 **Figure S5.** Product distributions with time-on-stream over (a) Beta-H, (b) Beta-C and (c) Beta-N,
8 respectively.

9
10
11
12
13
14

1

2


3

4

Figure S6. Thermogravimetric (TG) curves of various spent Beta zeolites.

5

6

7

8

Figure S7. Quantitative relationship between concentrations of different aluminum species and Brønsted acid sites (BAS) and phenol conversion(all provided data were evaluated at 353 K and 1 h, with a ratio of phenol and *tert*-butanol to 2:1)

9

10

11

12

1

2

3

Table S1. Acid density of Beta zeolite catalysts

Catalyst	Acidity ^a (mmol g ⁻¹)		
	Weak acid sites ^b	Strong acid sites ^c	Total acid sites ^d
Beta-H	1.18	0.72	1.90
Beta-C	0.92	0.49	1.41
Beta-N	0.93	0.46	1.39

^a Measured by NH₃-TPD.^b The density of weak acid sites are measured at 323–543 K.^c The density of strong acid sites are measured at 543–873 K.^d The total density of acid sites = the density of weak acid sites + the density of strong acid sites.

4

5

Table S2. The distribution of Brønsted acid sites in Beta zeolites

Catalyst	B _{total} ^a (mmol g ⁻¹)	B _{a&b} ^b (mmol g ⁻¹)	B _c ^c (mmol g ⁻¹)	B _{a&b} /B _{total} (%)
Beta-H	0.141	0.107	0.034	76
Beta-C	0.123	0.073	0.050	59
Beta-N	0.116	0.058	0.058	50

^a The concentration of total Brønsted acid sites is measured by the Py-IR spectra.^b The concentration of Brønsted acid sites in the channels along the *a* and *b* axis is determined by FT-IR spectra of adsorbed 2,4,6-trimethylpyridine.^c The concentration of Brønsted acid sites in the channel along the *c* axis is calculated by B_c = B_{total} - B_{a&b}.

6 **Note:** Pyridine molecules can enter into all channels of Beta zeolite along the *a*, *b* and *c* axis to
 7 determine the total Brønsted acid sites of catalysts, while the 2,4,6-trimethylpyridine with a size of
 8 6.2 × 5.6 Å can only access the pore channels along the *a* and *b* axis.

9

10

Table S3. Coke deposit of resultant Beta zeolites.

Catalyst	sample weight (mg)	soft coke ^a (g/g ⁰ cat) × 10 ⁻²	hard coke ^b (g/g ⁰ cat) × 10 ⁻²	Average coke rate ^c (mg/g ⁰ · h ⁻¹ cat)
Beta-H	4.5	7.5	10.0	2.56
Beta-C	5.3	10.7	7.1	2.09
Beta-N	4.6	10.1	7.3	1.95

^a The weight loss from 423 to 593 K.^b The weight loss from 593 to 1073 K.^c Average coke rate = the weight of hard coke/time.

11

12

2 References

- 3 (1) Huang, Y. Q.; Wang, M. N.; Huang, Y.; Shang, J.; Liu, B. Y. Mesoporous Beta zeolites with
4 controlled distribution of Brnsted acid sites for alkylation of benzene with cyclohexene.
5 *Results. Eng.*, **2023**, 19,101377.
- 6 (2) Jiang, H. Y.; Zhang, Z.; Li, X.; Zeng, X. X.; Pu, T.; Liu, B. Y. Selective alkylation of phenol
7 and *tert*-butanol using Zr-containing Beta zeolite. *J. Mater. Chem. A*, **2025**, 13, 7882-7891.
- 8 (3) Sazama, P.; Tabor, E.; Klein, P.; Wichterlová, B.; Sklenak, S.; Mokrzycki, L.; Pashkkova,
9 V.; Ogura, M.; Dědeček, J. Al-rich beta zeolites. Distribution of Al atoms in the framework
10 and related protonic and metal-ion species. *J. Catal.*, **2016**, 333, 102-114.
- 11 (4) Liu, B. Y.; Zhang, J. W.; Huang, Y. Q.; Xiong, F.; Luo, R. C. Defect-designed ZSM-12
12 zeolites for alkylation of phenol with *tert*-butyl alcohol. *Mol. Catal.*, **2022**, 519, 112144.
- 13 (5) Dědeček, J.; Čapek, L.; Kaucký, D.; Sobalík, Z.; Wichterlová, B. Siting and Distribution of
14 the Co Ions in Beta Zeolite: A UV–Vis–NIR and FTIR Study. *J. Catal.*, **2002**, 211, 198-
15 207.
- 16 (6) Čapek, L.; Dědeček, J.; Sazama, P.; Wichterlová, B. The decisive role of the distribution of
17 Al in the framework of beta zeolites on the structure and activity of Co ion species in
18 propane-SCR-NO_x in the presence of water vapour. *J. Catal.*, **2010**, 272, 44-54.