Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

Supporting Information *for*

Static-dynamic vacancies via pre-embedded heterogeneous Gd ions in RuO₂/Gd-Co₃O₄ enabling robust water oxidation

Xinhua Li ^{#a}, Honghao Zhong ^{#a}, Shen Cheng ^b, Wanchuan Jin ^a, Yuxin Wang ^a, Yuanhong Liu ^a, Qinghua Liu ^b, Ruishi Xie *a, Yuanli Li *a

- ^a Innovation Center of Nuclear Environmental Safety Technology, School of Materials and Chemistry, Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P. R. China
- ^b National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui, P. R. China

Physical characterizations

Scanning electron microscopy (SEM) images was collected by a Field Emission Scanning Electron microscope (FESEM Zeiss Ultra-55) at an acceleration voltage of 10 kV. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) images were recorded on a JEM 2100F at an acceleration voltage of 200 kV. X-ray diffraction (XRD) patterns were recorded by a Bruker D8 Advance A25 XRD diffractometer with Cu K α radiation ($\lambda = 1.5405$ Å) at a scan rate of 5° min⁻¹ in the 20 range of $10^{\circ} \sim 80^{\circ}$. X-ray photoelectron spectroscopy (XPS) analysis was conducted on a Thermo Scientific Escalab250Xi spectroscope with Al-Kα radiation. The collected XPS spectra was calibrated by referencing the binding energy of C 1s to 284.80 eV. Raman spectra were collected on a Renishaw inVia confocal Raman microscope under an excitation of 532 nm laser with the power of 4.0 mW. Electron paramagnetic resonance (EPR) was measured on a Bruker A300 spectrometer. The mass loading of materials was measured by an Agilent 730 inductively coupled plasma optical emission spectrometry (ICP-OES). The leaching rates of metal ions were determined using an Agilent 7850 inductively coupled plasma mass spectrometer (ICP-MS) for quantitative analysis.

[#] These authors contributed equally to this work.

^{*}Email: yli@swust.edu.cn, rxie@swust.edu.cn

Electrochemical tests

Three-electrode system on a CHI 760e electrochemical workstation (Chenhua, Shanghai) in a 0.5 M $\rm H_2SO_4$ solution at ambient temperature. The catalysts self-supported on CC (1 cm × 1 cm), a Pt sheet (1 cm × 1 cm) and a saturated $\rm Hg/Hg_2SO_4$ electrode were used as the working, counter, and reference electrodes, respectively. Before tests, the potential of the $\rm Hg/Hg_2SO_4$ reference electrode was calibrated in $\rm H_2$ -saturated 0.5 M $\rm H_2SO_4$ solution using Pt mesh as both working and counter electrode. As shown in Figure S5, The CV curve were recorded at a scan rate of 1 mV/s. The potential achieved at the zero current is the thermodynamic potential for $\rm H_2$ evolution/oxidation. The zero current was achieved at -0.708 V vs. $\rm Hg/Hg_2SO_4$, and therefore $\rm E_{RHE} = \rm E_{Hg/Hg;SO_4} + 0.708$ V. CV tests at 50 mV s⁻¹ were then conducted to remove impurities from the electrode surface. The LSV curves were then recorded at a scan rate of 2 mV s⁻¹ in 0.5 M $\rm H_2SO_4$. All the potentials reported in this work were corrected by ohmic loss according to the following equation.

$$E_{iR\text{-}free} = E_{raw} - iR_s$$

where $E_{iR\text{-}free}$, E_{raw} , i and R_s represent the corrected potential, raw potential, current and solution resistance, respectively.

Tafel plots were transferred from LSV curves according to the following equation.

$$\eta = a + b * log j$$

where η denotes the overpotential, j is the current density and b is the Tafel slope.

The OER kinetics was investigated using EIS at a potential of 1.43 V vs. RHE, within the frequency range of 0.01-100 kHz and an amplitude of 5 mV. Long-term chronopotentiometry measurements were conducted at a benchmark current density of 10 mA cm⁻² and 100 mA cm⁻². The C_{dl} was obtained by applying a linear fit to plots of current density difference versus sweep rate, where the slope represents the C_{dl} value. The ECSA of the measured electrocatalysts was calculated using a conventional CV method, in which the current density was recorded upon a voltage increase from 2 to 10 mV with a sweep rate of 2 mV s⁻¹ within a voltage window of 1.07 - 1.17 V vs. RHE and in the absence of Faradaic processes.

In situ EIS measurements

In situ EIS measurements were performed over a frequency range from 10^{-2} to 10^{5} Hz with AC amplitude of 5 mV.

In situ SRIR measurements

In situ SRIR measurements were conducted at the infrared beamline BL01B of NSRL using a homemade top-plate cell reflection IR setup with a ZnSe crystal as the infrared transmission window. The catalyst electrode was pressed tightly against the ZnSe crystal window with a micron-scale gap to minimize the loss of infrared light. To ensure high-quality SRIR spectra, the apparatus utilized a reflection mode with a vertical incidence of infrared light. The infrared spectrum was obtained by averaging 128 scans at a resolution of 4 cm⁻¹. Prior to each systemic OER measurement, the background spectrum of the catalyst electrode was obtained at an open-circuit voltage. The test potential range of RuO₂/Gd-Co₃O₄ was measured from 1.2 V to 1.8 V vs. RHE, with a measurement interval of 0.1 V. For Co₃O₄, the range was from 1.5 V to 2.1 V, and for Gd-Co₃O₄, it was from 1.5 V to 2.0 V. The infrared data was processed and smoothed using OPUS software.

Supplementary figures

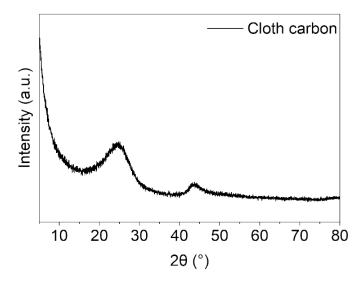


Figure S1. XRD pattern of the CC substrate.

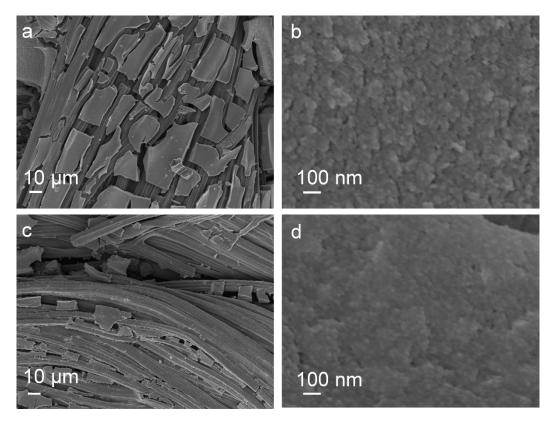


Figure S2. SEM images of (a, b) Gd-Co₃O₄ and (c, d) RuO₂/Gd-Co₃O₄.

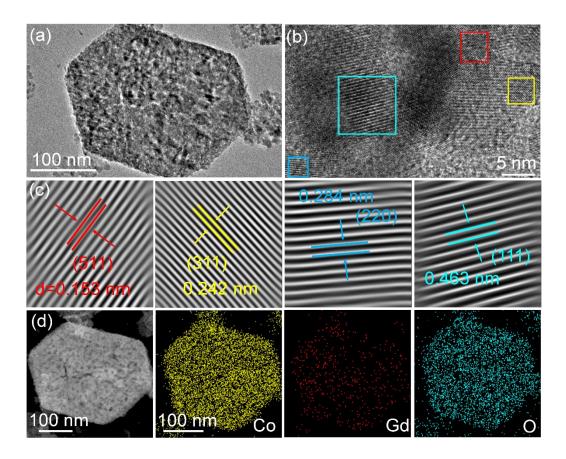


Figure S3. (a) TEM image, (b) HRTEM image, (c) IFFT graphs of the Gd-Co₃O₄ (below), (d) STEM image and corresponding element mapping images of Gd-Co₃O₄.

Figure S4. EDS patterns of (a) Gd-Co₃O₄ and (b) RuO₂/Gd-Co₃O₄.

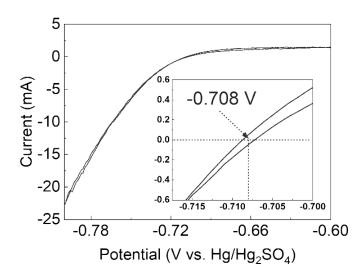


Figure S5. Hg/Hg_2SO_4 reference electrode calibration in H_2 -saturated 0.5 M H_2SO_4 solution.

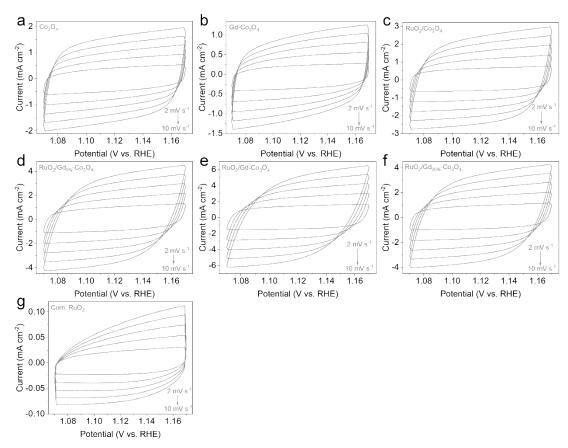


Figure S6. ECSA determination. CV plots of (a) Co_3O_4 , (b) $Gd-Co_3O_4$, (c) RuO_2/Co_3O_4 , (d) $RuO_2/Gd_5\%-Co_3O_4$, (e) $RuO_2/Gd-Co_3O_4$, (f) $RuO_2/Gd_{20\%}-Co_3O_4$ and (d) Com. RuO_2 , respectively, at different scan rates.

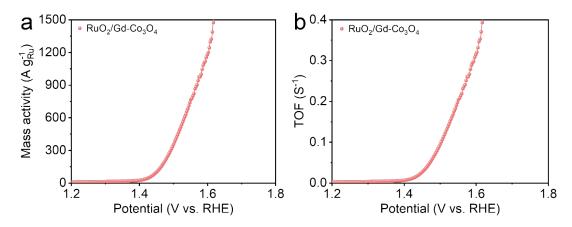


Figure S7. (a) Turnover frequency (TOF) and (b) mass activity of RuO₂/Gd-Co₃O₄.

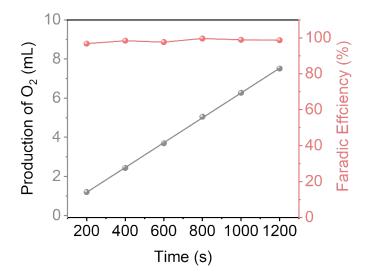


Figure S8. Faradaic efficiency of the RuO₂/Gd-Co₃O₄ catalyst during the OER.

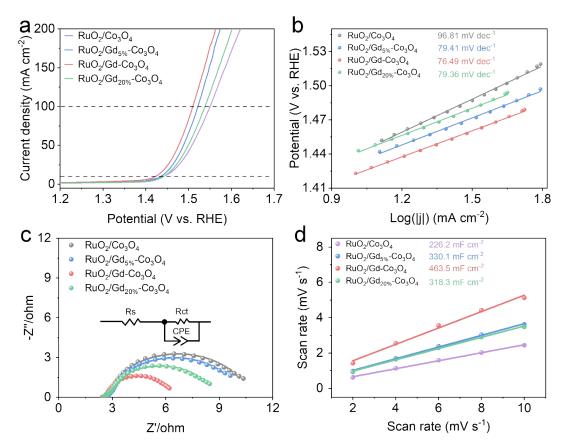


Figure S9. (a) LSV curves, (b) Tafel plots, (c) EIS and (d) C_{dl} measurements for $RuO_2/Gd-Co_3O_4$ with varying Gd concentrations.

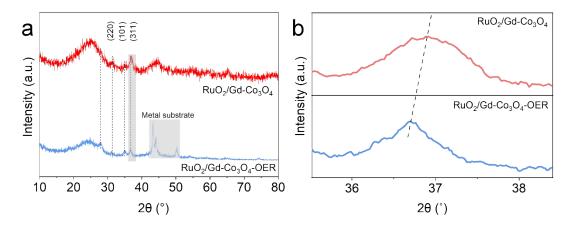


Figure S10. (a) XRD patterns and (b) partial magnification of RuO₂/Gd-Co₃O₄ before and after the chronopotentiometry test.

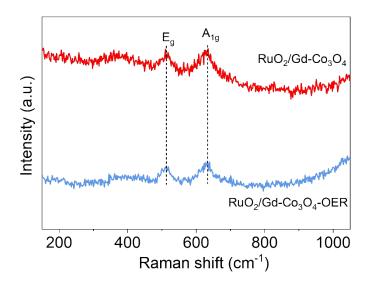


Figure S11. Raman patterns of the $RuO_2/Gd-Co_3O_4$ before and after the chronopotentiometry test.

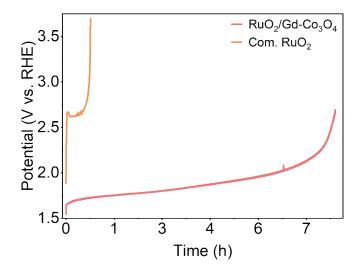


Figure S12. Chronoamperometric stability tests of $RuO_2/Gd-Co_3O_4$ and $Com. RuO_2$ at 100 mA cm⁻².

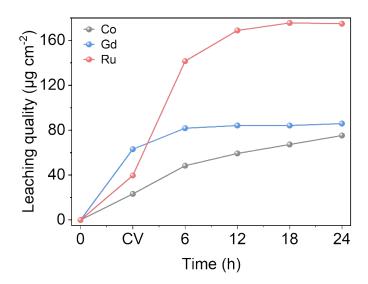


Figure S13. Cumulative leaching of Gd ions from RuO₂/Gd-Co₃O₄ measured at a constant current density of 10 mA cm⁻² over varying electrolysis durations.

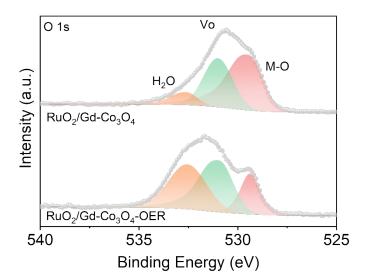


Figure S14. The O1s XPS spectra of $RuO_2/Gd-Co_3O_4$ before and after the chronopotentiometry test.

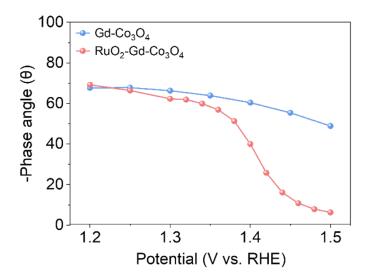


Figure S15. The corresponding phase peak angles of Gd-Co $_3$ O $_4$ and RuO $_2$ /Gd-Co $_3$ O $_4$ from 1.20 to 1.50 V vs. RHE.

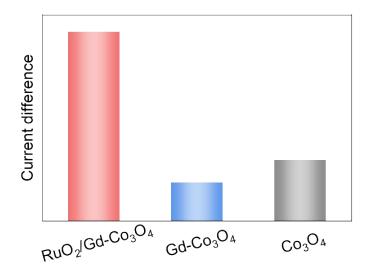


Figure S16. The current differences of the polarization curves of Co_3O_4 , $Gd-Co_3O_4$ and $RuO_2/Gd-Co_3O_4$ in 0.5 M H_2SO_4 solution with and without 1.0 M methanol.



Figure S17. Original SRIR spectra for Co₃O₄, Gd-Co₃O₄, and RuO₂/Gd-Co₃O₄.

Supplementary Table

Table S1. EIS fitting results of the Co₃O₄, Gd-Co₃O₄, RuO₂/Gd-Co₃O₄ with varying Gd concentrations and Com. RuO₂.

Electrode	Rs (Ω)	CPE (F cm ⁻²)	Rct (Ω)
Co ₃ O ₄	2.629	0.181	136.6
Gd-Co ₃ O ₄	2.642	0.124	121.6
RuO ₂ /Co ₃ O ₄	2.672	0.282	8.056
$RuO_2/Gd_{5\%}\text{-}Co_3O_4$	2.753	0.400	7.504
RuO ₂ /Gd-Co ₃ O ₄	2.605	0.629	3.783
$RuO_2/Gd_{20\%}\text{-}Co_3O_4$	2.634	0.346	6.149
Com. RuO ₂	2.681	0.00935	557

Table S2. Comparison of OER activities, stabilities, and mass activities of various electrocatalysts in acidic conditions.

erective duting site in defend conditions.								
Catalysts	Electrolyte	Overpotential (η ₁₀ : mV)	Stability (η ₁₀ : h)	Mass activity (A g _{Ru} -1@V vs.	Ref.			
				RHE)				

RuO ₂ /Gd-Co ₃ O ₄	0.5 M H ₂ SO ₄	193	72	585.774	This
				@1.53	work
Mn-Ru@RuO ₂	$0.5 \text{ M H}_2\text{SO}_4$	220	220	1370	2
				@1.53	
RuCo@C/CC	$0.5 \text{ M H}_2\text{SO}_4$	200	25	200	3
				@1.48	
Mn-RuO ₂ /CeO ₂	0.1 M HClO_4	227	300	-	4
6% Sm-RuO ₂	0.1 M HClO_4	218.5	130	-	5
RuO ₂ /Ru	0.1 M HClO_4	245	100	-	6
Cr_2O_3/RuO_2	$0.5 \text{ M H}_2\text{SO}_4$	220	100	-	7
AC-Sm-RuO ₂	$0.5 \text{ M H}_2\text{SO}_4$	200	300	-	8
$Ir-RuO_x@WO_3$	$0.1 \text{ M H}_2\text{SO}_4$	148	12	-	9
$Ru@La/Co_3O_4-20$	$0.5 \text{ M H}_2\text{SO}_4$	244	30	-	10
C-Ru-Co ₃ O ₄	$0.5 \text{ M H}_2\text{SO}_4$	252	30	-	11
Ru _{0.20} (Ir,Fe,Co,	0.1 M HClO_4	237	24	92@1.53	12
$Ni)_{0.80}$					
Ru-NiFe-BDC/NF	$0.5 \text{ M} \text{ H}_2\text{SO}_4$	247	20	66.6	13
				@1.5	
Ru/RuO ₂ -Co ₃ O ₄	0.1 M HClO_4	226	19	-	14
Co_3O_4/RuO_2	$0.5 \text{ M H}_2\text{SO}_4$	257	100	-	15
Ru-Co ₃ O ₄	$0.5 \text{ M H}_2\text{SO}_4$	365	16	-	16
Ru_x/RuO_2	$0.5 \text{ M} \text{ H}_2\text{SO}_4$	176.7	20	-	17
Ru/RuO ₂ /NC	$0.5 \text{ M H}_2\text{SO}_4$	211	100	-	18
$Ru_{0.6}Mo_{0.2}Cr_{0.2}O_x$	$0.5 \text{ M H}_2\text{SO}_4$	204	60	577.8	19
				@1.5	
RuO_xSe_y -800	$0.5 \text{ M H}_2\text{SO}_4$	211	18	239.1	20
•				@1.53	
SiO _x /RuCoO _x NPs	$0.5 \text{ M H}_2\text{SO}_4$	217	12	-	21
RuO ₂ /D-Co ₃ O ₄ /CC	$0.5 \text{ M H}_2\text{SO}_4$	181	120		22

References

- 1. W. J. Zhu, F. Yao, K. J. Cheng, M. T. Zhao, C. J. Yang, C. L. Dong, Q. M. Hong, Q. Jiang, Z. C. Wang and H. F. Liang, Direct dioxygen radical coupling driven by octahedral ruthenium-oxygen-cobalt collaborative coordination for acidic oxygen evolution reaction, *J. Am. Chem. Soc.*, 2023, **145**, 17995-18006.
- 2. Y. Zhang, Y. X. Li, H. H. Wei, Q. Wang, Z. X. Su, Z. X. Li, Y. Y. Gao, Y. Shen, H. Li, L. T. Zhang, D. Zu, H. F. Wang and X. Q. Gong, Efficient and durable OER electrocatalysts through vacancy engineering and core-shell structure design in acidic environment, *Mater. Today Energy*, 2024, **46**, 101722.
- 3. H. R. Cai, N. Jiang, L. F. Xiong, F. F. Shang, J. Hou, Y. Lin, C. Li, X. J. Zhang, D. Su and S. C. Yang, Self-supported porous carbon decorated with coralline RuCo alloy for efficient OER in acid, *Int. J. Hydrogen Energy*, 2024, **84**, 840-847.
- 4. J. Li, Y. T. Liu, M. Q. Yao, S. Geng and F. Liu, Enhancement of acidic OER performance through heterojunction interface coupling promoted by heteroatom

- doping, Chem. Eng. J., 2025, 521, 167203.
- 5. W. R. Yang, J. T. Guo, X. Xie, C. L. Yang and S. Geng, Ru-O-Sm structure enhances water adsorption to improve OER performance in acidic media, *J. Electroanal. Chem.*, 2025, **996**, 119407.
- 6. J. H. Ni, Y. S. Han, X. Xie, C. L. Yang and S. Geng, Electrospinning-controlled calcination conditions fabrication of RuO₂/Ru nanofibers for acidic OER, *Mol. Catal.*, 2025, **586**, 115418.
- 7. J. Y. Zhao, N. Yao and W. Luo, Cr₂O₃/RuO₂ heterojunction catalysts for enhanced oxygen evolution reaction in acidic media, *ChemistrySelect*, 2025, **10**, e01065.
- 8. Y. F. Chen, Z. J. Li, H. Jang, Z. Wang, M. G. Kim, Q. Qin and X. E. Liu, Sminduced symmetry-broken ru centers for boosting acidic water oxidation, *ACS Sustainable Chem. Eng.*, 2024, **12**, 5884-5892.
- 9. X. Y. Li, Z. H. Gu, J. F. Cheng, G. Z. Zhang, F. H. Zheng, J. W. Huang, J. X. Xu, G. H. Wei and J. L. Zhang, Ir-RuO_x nanoparticles on WO₃ ultrafine nanowires as catalysts for the oxygen evolution reaction in acidic media, *ACS Appl. Nano Mater.*, 2024, 7, 12958-12969.
- 10.C. H. Li, C. Z. Yuan, C. L. Zhou, X. Yang, R. L. Xu, F. L. Wu, L. Xin, L. X. Wang, X. M. Zhang, K. N. Hui, S. F. Ye and Y. F. Chen, Stabilizing Ru single atoms on asymmetric La/Co₃O₄ supports with strong metal-support interaction for efficient acidic water oxidation, *ACS Catal.*, 2025, **15**, 7403-7413.
- 11.T. H. Liu, J. Y. Guo, A. P. Wu, Y. Y. Fan, Y. Xie and C. G. Tian, Carbon-encapsulated Ru-Co₃O₄ nanosheets as electrocatalysts for acidic water oxidation, *ACS Appl. Nano Mater.*, 2024, 7, 13298-13307.
- 12. A. L. Maulana, S. Han, Y. Shan, P. C. Chen, C. Lizandara Pueyo, S. De, K. Schierle Arndt and P. Yang, Stabilizing Ru in multicomponent alloy as acidic oxygen evolution catalysts with machine learning-enabled structural insights and screening, *J. Am. Chem. Soc.*, 2025, **147**, 10268-10278.
- 13. P. Vijayakumar, S. Lenus, K. Pradeeswari, M. Kumar, J. H. Chang, M. Kandasamy, M. Krishnamachari, Z. F. Dai, A. A. Al-Kahtani and P. Sankar Krishnan, In situ reconstructed layered double hydroxides via MOF engineering and Ru doping for decoupled acidic water oxidation enhancement, *Energy Fuels*, 2024, 38, 4504-4515.
- 14.T. T. Wang, Z. J. Li, H. Jang, M. G. Kim, Q. Qin and X. E. Liu, Interface engineering of oxygen vacancy-enriched Ru/RuO₂-Co₃O₄ heterojunction for efficient oxygen evolution reaction in acidic media, *ACS Sustainable Chem. Eng.*, 2023, **11**, 5155-5163.
- 15.M. T. Zhao and H. F. Liang, Crystal facet regulation and ru incorporation of Co₃O₄ for acidic oxygen evolution reaction electrocatalysis, *ACS Nanosci. Au*, 2024, 4, 409-415.
- 16.R. Madhu, A. Karmakar, P. Arunachalam, J. Muthukumar, P. Gudlur and S. Kundu, Regulating the selective adsorption of OH* over the equatorial position of Co₃O₄ via doping of Ru ions for efficient water oxidation reaction, *J. Mater. Chem. A*, 2023, **11**, 21767-21779.
- 17. X. Y. Zhu, M. H. Fang, S. R. Ke, B. Z. Yang, S. J. Yang, Y. H. Li, M. L. Zhan and

- X. Min, Rapid synthesis of an aluminum-doped ultrathin Ru_x -RuO₂ heterostructure optimized through combined wet-dry microwave radiation for efficient acidic and alkaline overall water splitting, *J. Mater. Chem. A*, 2025, **13**, 5091-5105.
- 18.M. Wu, Y. Y. Fan, Y. Huang, D. X. Wang, Y. Xie, A. P. Wu and C. G. Tian, Synergistic Ru/RuO₂ heterojunctions stabilized by carbon coating as efficient and stable bifunctional electrocatalysts for acidic overall water splitting, *Nano Res.*, 2024, **17**, 6931-6939.
- 19.J. Yang, Y. W. Zhang and Y. P. Liu, Constructing crystalline-amorphous heterophase interfaces through Cr/Mo Co-doping in RuO₂ enables efficient acidic oxygen evolution reaction, *Ionics.*, 2025, DOI: 10.1007/s11581-025-06485-w.
- 20. P. Du, C. L. Lin, X. He, Z. C. Zheng, X. Y. Xie, K. Huang, M. Lei and H. L. Tang, Controlled fabrication of Ru-O-Se composites for enhanced acidic oxygen evolution, *Adv. Compos. Hybrid Mater.*, 2023, **6**, 40.
- 21.T. Zhu, Y. H. Wang, T. Sun, Y. C. Pi, X. D. Pi, J. Xu and K. J. Chen, d-orbital charge density regulation of SiO_x/RuCoO_x nanoparticles to boost water splitting in acidic media, *Rare Met.*, 2025, 44, 6223-6231.
- 22. Y. J. Liu, Z. S. Yuan, Q. Song, T. G. Xu, G. He, H. X. Sun, Q. Qiao, X. F. Guan, T. Xu, X. P. Dai and X. Zhang, Dual-defective-engineered RuO₂/D-Co₃O₄/CC composite as efficient electrocatalysts for triggering oxygen evolution reaction in acidic media, *Sci. China Mater.*, 2024, **67**, 771-779.