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1. Experiment section

1.1. Synthesis of NbSe,/MoSe,

Dissolve 0.1 mmol of (NH4)¢Mo07,0,4-4H,0 and 0.1 mmol of NbCls separately in
30 mL of deionized water and 20 mL of ethanol, respectively, stirring until fully
dissolved. After mixing the resulting solutions and stirring thoroughly, transfer the
mixed solution to a 50 mL reaction vessel lined with PTFE (Teflon) and heat at 160 °C
for 24 h. Wash the obtained product three times with deionized water and anhydrous
ethanol, then dry at 60 °C for 24 h to obtain a deep blue powder precursor.

MoSe,/NbSe, gray powder was obtained by annealing a mixture of the precursors
and NaCl with Se powder in a ceramic boat (mass ratio 1:1.2:1.5) at 900 °C for 5h
under a flowing Ar/H, gas mixture in a tube furnace.

Synthesis of MoSe,

Dissolve 0.1 mmol of (NH4)sM070,4-4H,O in a mixed solution of 30 mL
deionized water and 20 mL ethanol, stirring until fully dissolved. Transfer the resulting
solution to a 50 mL reaction vessel lined with PTFE (Teflon) and heat at 160 °C for 24
h. Wash the obtained product three times with deionized water and anhydrous ethanol,
then dry at 60 °C for 24 h to obtain a brown powder precursor.

Place the precursor , NaCl, and selenium powder into a ceramic boat, and anneal
in a tube furnace at 900 °C under a mixed argon-hydrogen gas flow for 5 h to obtain
MoSe, powder.

1.2. Material characterization
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The phases and composition were characterized by X-ray diffraction (XRD,
SmartLabOKW with Cu-Ka radiation at 40 kV, L = 1.541 A), X-ray photoelectron
spectroscopy (XPS, Escalab 250Xi), Raman spectroscopy (Renishaw InVia, 532 nm
excitation wavelength) and energy-dispersive spectroscopy (EDS, FEI Talos F200S).
The microstructures and morphology were investigated through field-emission
scanning electron microscopy (FESEM, Thermo Fisher Scientific Apreo C, USA) and
transmission electron microscopy (TEM, Talos F200S, FEI, Thermo). The specific
surface area and pore size distribution (PSD) were analyzed by the Brunauer-Emmett-
Teller method (BET, Micromeritics ASAP2460) and the Barrett-Joyner-Halenda (BJH)

method, respectively.

1.3. Electrochemical test

The working electrode was prepared by mixing the active material
(NbSe,/MoSe,), sodium carboxymethyl cellulose (CMC), and conductive carbon black
in a weight ratio of 8:1:1 with deionized water as the solvent. The slurry was uniformly
coated onto a copper foil, which was then dried in an oven at 60 °C for 2 h and further
vacuum-dried at 80 °C for 12 h. After drying, the copper foil was punched into 12 mm
discs, with an average loading of 1.2-1.6 mg cm2. CR2025 coin-type half-cells were
assembled in a glove box filled with Ar, where the H,O and O, content was below 0.01
ppm. The separator used was a single-layer polypropylene membrane (Celgard, 2500).
The electrolytes used were: (1) IM LiPF¢ in DMC:EC:EMC = 1:1:1 Vol% with 10%

FEC, (2)IM LiPF¢ in DEC:EC:EMC = 1:1:1 Vol% with 10% FEC.
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Cyclic voltammetry (CV) measurements were performed on an electrochemical
workstation (CHI660E) at a scan rate of 0.1 mV s!. Electrochemical impedance
spectroscopy (EIS) was conducted on the same workstation (CHI660E) in the frequency
range of 0.01 Hz to 1 x 10° Hz. The constant current charge/discharge tests were carried
out on a LANHE battery testing system (CT-3002A, Wuhan, China). All specific
capacity values are based on the mass of MoSe,/NbSe,. The rate and high-current half-
cell tests were conducted using cells that had undergone 10 pre-cycles. For tests at -25

°C, the cells were pre-activated with 3 cycles at room temperature before testing.

1.4. Analog calculation

The theoretical calculations involved in this study were performed using
simulation software. First, the molecular models were constructed using the simulation
software. Then, the DMol3 module was used to optimize the geometries of different
molecular models. The structural and electronic properties of MoSe,/NbSe, and MoSe,
were calculated using the simulation software. The calculations were based on density
functional theory (DFT) with the Generalized Gradient Approximation (GGA) and the
Perdew-Burke-Ernzerhof (PBE) functional for handling exchange and correlation
terms. The wavefunction was truncated at 550 eV, and the energy convergence criterion
was set to 106 eV. A 2x2x2 mesh was used for Li point sampling. To avoid interactions,
a vacuum layer of 15 A was placed around the MoSe,/NbSe, composite and MoSe, in
the simulation model. The Castep module was used to evaluate the structural and

electronic properties of MoSe,/NbSe, and MoSe,, as well as the adsorption energy and
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work function of MoSe,/NbSe, and MoSe, for Li*. To study the movement of Li* in
the composite, molecular dynamics calculations and analysis were performed using the
Forcite module. The radial distribution function (RDF) was obtained from the MD

simulation results, and the coordination number of sodium ions was calculated.

1.5. Full battery test

The LiFePOy4cathode material was tested in a half-cell configuration. Figure R11
shows the voltage-specific capacity profile of the half-cell during the third cycle, with
a discharge specific capacity of 153 mAh g-!. The cathode was prepared using an Al
foil current collector with a diameter of 12 mm, yielding an active material loading of
about 3.4 mg cm? and an areal capacity of approximately 0.52 mAh cm-.

The NbSe,/MoSe, anode fabricated in this work delivered a reversible charge
specific capacity of ~586.6 mAh g! in the third cycle under the corresponding test
current density. The anode was prepared on a Cu foil current collector with a diameter
of 16 mm, giving an active material loading of about 1.05 mg cm2 and an areal capacity

of ~0.624 mAh cm™2. The NP ratio is calculated as:

b Anode_sc X Anode_td X Anode_amcr
T C athode_sc X Cathode_td X Cathode_amcr

In this equation:
1.Anode sc is Anode specific capacity.
2. Anode td is Anode tap density.
3. Anode _amcr is Anode active material content ratio.
4. Cathode_sc is Anode specific capacity.

5. Cathode td is Anode tap density.
5



10

11

12

13

14

15

16

17

18

19

20

21

22

6. Cathode amcr is Anode active material content ratio.

Based on the formula, the NP ratio for the full cell is 1.2:1.
1.6 Calculation formula

Equation S1. D = 4/zz (mV,/MA)*(AEs/ AEz)’. Where, 7 represents the relaxation
time, m denotes the mass of the active material, V,, refers to the molar volume, 4
represents the surface area of the electrode, 4Es is the steady-state voltage change in
volts, and AE is the voltage change caused during constant current charge-discharge
process in volts.

Equation S2. i=avb and log i=b log v + log a.

Equation S3. Battery weight energy density = Battery capacity * Discharge
platform/weight.

Fquation S4. The correction adsorption energy (AE_ads) of the lithium battery anode

material is defined as:

AE, = (B Epoge = ME )/ (1)

total = “host

In this equation:

1. Epa s the total energy after the interaction between the battery anode material and
Li*.

2. Ehost is the energy of the anode material itself.

3. E Li" is the energy of the Li* ion.

4. (n) is the number of Li* ions involved, where in the following studies, (n=1) is used.
1.7 Electrochemical equation

Reaction S1. The electrochemical reaction during the lithium storage of MoSe,/NbSe,

6
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is as follows:
MoSe, + Li*+ xe” = Li,MoSe,
NbSe, + Li* + xe~ = Li,NbSe,
LiyMoSe,+ (4 — x) Li*+ (4 — x)e” — 2Li,Se +Mo

Li,NbSe, + (4 — x) Li*+ (4 — x)e” = 2Li,Se +Nb

(2)

3)
(4)
)
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3 Fig. S3. NbSe»/MoSe,-EEM MD simulation snapshots.
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2 Fig. S7. EDS mappings of MoSe;.
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2 Fig S14 Morphology after 20 cycles (a, b), EDS images (c), and elemental distribution(d-i).
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2 Fig. S15 Morphology after 50 cycles (a, b), EDS images (c), and elemental distribution(d-i).
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Fig. S16 TEM images of the NbSe,/MoSe, electrode after cycling.
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