Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

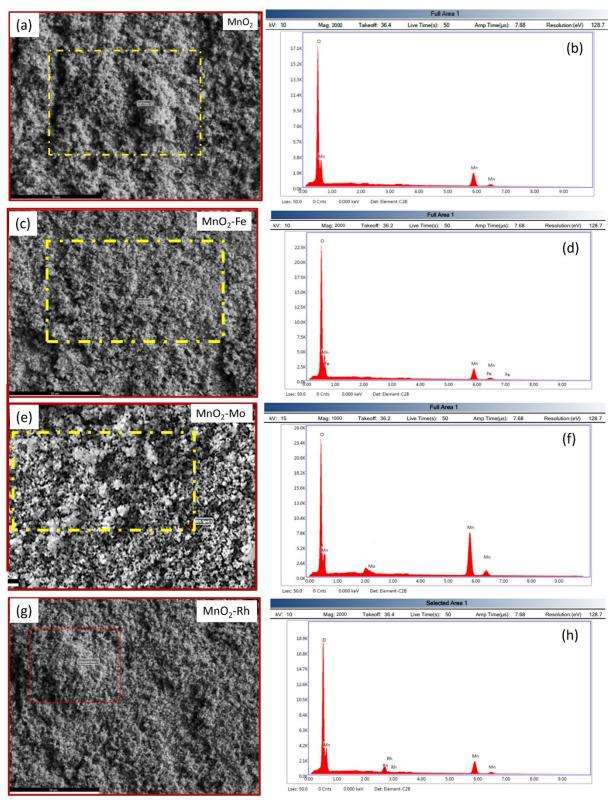
## **Supporting Information**

# Inhibiting Jahn-Teller distortion of $\delta$ -MnO<sub>2</sub> cathode using 3d and 4d block elements doping to improve aqueous zinc ion battery performance

Priya Yadav,<sup>a</sup> Pragati,<sup>a</sup> Amit Kumar,<sup>b</sup> S.A. Hashmi,<sup>b</sup> Satendra Pal Singh,<sup>c</sup> Palash J. Thakuria,<sup>d</sup> Ankur K. Guha,<sup>d</sup> Arun Kumar Rai,<sup>e</sup> Alok Kumar Rai<sup>a\*</sup>

<sup>a</sup>Department of Chemistry, University of Delhi, Delhi 110007, India <sup>b</sup>Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India <sup>c</sup>Department of Physics, University of Lucknow, Lucknow 226007, India <sup>d</sup>Advanced Computational Chemistry Centre, Department of Chemistry, Cotton University, Panbazar, Guwahati, Assam 781001, India <sup>e</sup>Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013, India

E-mail address:


\*Corresponding author: alokkumarrail@gmail.com (A.K. Rai)

**Table S1:** Lattice parameters and Volume obtained after the Rietveld refinement.

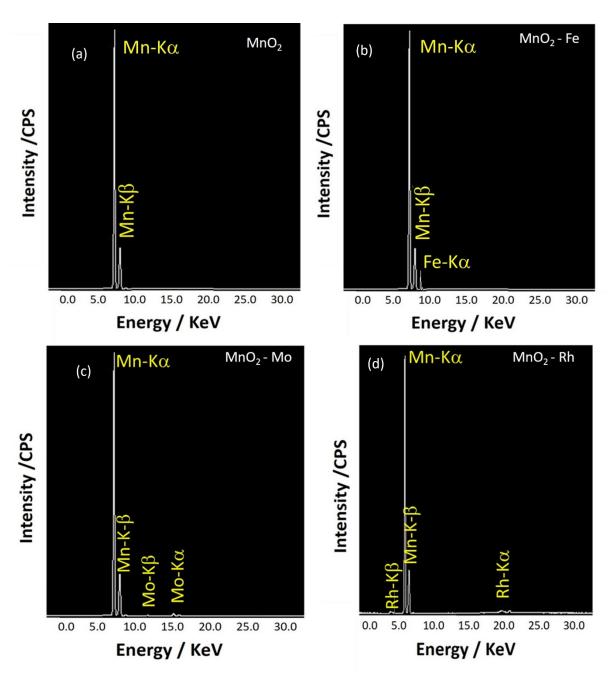
| S.<br>No | Cathode Materials         | a        | b         | c         | β         | Volume   | Fraction of Mn <sub>0.98</sub> O <sub>2</sub> |
|----------|---------------------------|----------|-----------|-----------|-----------|----------|-----------------------------------------------|
| 1        | Pure MnO <sub>2</sub>     | 5.113(4) | 2.8324(8) | 7.356(3)  | 104.21(7) | 103.3(1) | 0                                             |
| 2        | Fe doped-MnO <sub>2</sub> | 5.744(1) | 2.781 (7) | 7.375 (9) | 104.77(2) | 113.9(4) | 54.23                                         |
| 3        | Mo doped-MnO <sub>2</sub> | 6.226(3) | 2.936(2)  | 7.273(4)  | 103.30(3) | 129.4(1) | 77.95                                         |
| 4        | Rh doped-MnO <sub>2</sub> | 6.259(1) | 2.877(4)  | 7.324(2)  | 104.4(1)  | 127.7(5) | 26.42                                         |

#### 1. Energy dispersive spectroscopy (EDS)

The selected regions used for EDS acquisition are shown in Figure S1 (a), (c), (e), and (g), while the corresponding EDX spectra are presented in Figures (b), (d), (f), and (h). For the pure δ-MnO<sub>2</sub> sample (Figures S1 b), the EDS spectrum displays strong Mn and O peaks, consistent with the expected MnO<sub>2</sub> composition. Minor signals from C and K are attributed to the substrate and residual precursors. In the Fe-doped δ-MnO<sub>2</sub> sample (Figures S1 d), the additional Fe peaks appear alongside Mn and O, confirming the incorporation of Fe into the MnO<sub>2</sub> matrix. For the Mo-doped δ-MnO<sub>2</sub> sample (Figures S1 f), the clear Mo peaks are observed in conjunction with Mn and O. The absence of any extraneous elements confirms the effective incorporation of Mo<sup>6+</sup> into the MnO<sub>2</sub> lattice. Similarly, the Rh-doped δ-MnO<sub>2</sub> sample (Figures S1 h) exhibits distinct Rh peaks including Mn and O, indicating uniform and effective Rh incorporation. Overall, the EDS spectra of all the doped samples clearly verify the presence of Fe, Mo, and Rh, validating successful homogeneous elemental incorporation into the δ-MnO<sub>2</sub> framework. The absence of any impurity peaks further supports the phase purity and compositional integrity of the synthesized materials.



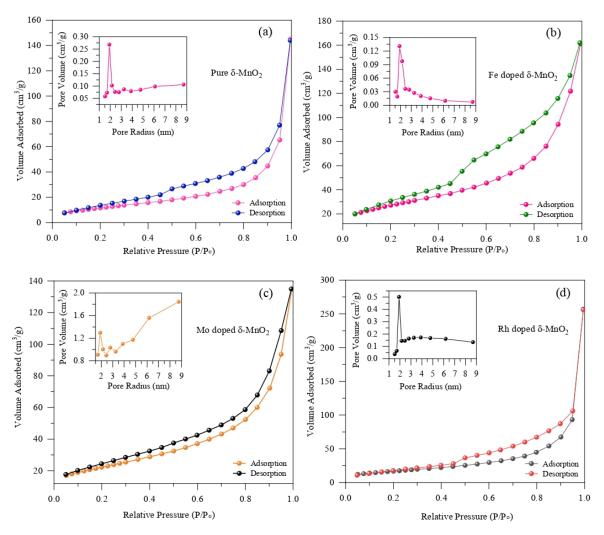
**Figure S1:** Energy dispersive spectroscopy (EDS) of (a-b) Pure; (c-d) Fe- doped; (e-f) Mo- doped and; (g-h) Rh- doped  $\delta$ -MnO<sub>2</sub> samples, respectively.


#### 2. Inductively coupled plasma mass spectrometry (ICP-MS) analysis:

As can be seen from the Table S2 that the dopant concentration is 75 ppb for Fe-doped  $\delta$ -MnO<sub>2</sub> sample, which corresponds to an atomic percentage of 4.89 % relative to Mn. Likewise, the Mo-doped  $\delta$ -MnO<sub>2</sub> sample shows a Mo concentration of 203.2 ppb, corresponding to an atomic percentage of 4.51%, whereas the Rh-doped  $\delta$ -MnO<sub>2</sub> sample contains 241 ppb of Rh, giving an atomic percentage of 4.89%. The consistent atomic percentages across the three compositions indicate a comparable level of dopant incorporation in the  $\delta$ -MnO<sub>2</sub> framework.

**Table S2:** Inductively coupled plasma mass spectrometry (ICP-MS) analysis of Fe- doped, Modoped and Rh- doped  $\delta$ -MnO<sub>2</sub> cathode materials.

| Cathode Materials           | Concentration of Dopants (ppb) | Concentration of Mn (ppb) | Atomic % |
|-----------------------------|--------------------------------|---------------------------|----------|
| Fe doped δ-MnO <sub>2</sub> | 75                             | 1530.7                    | 4.89     |
| Mo doped δ-MnO <sub>2</sub> | 203.2                          | 4503.6                    | 4.51     |
| Rh doped δ-MnO <sub>2</sub> | 241                            | 4919.7                    | 4.89     |


#### 3. X-ray Fluorescence Spectroscopy (XRF) analysis:



**Figure S2:** X-ray Fluorescence Spectroscopy (XRF) of (a) Pure; (b) Fe- doped; (c) Mo- doped and; (d) Rh- doped  $\delta$ -MnO<sub>2</sub> samples.

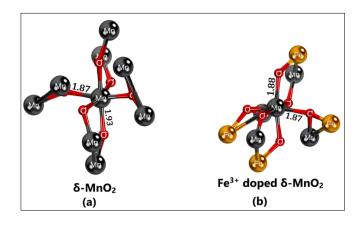
#### 4. BET analysis:

Based on the obtained isotherm data, the Fe<sup>3+</sup>-doped  $\delta$ -MnO<sub>2</sub> sample exhibits a high BET specific surface area of approximately 62 m<sup>2</sup> g<sup>-1</sup>. In comparison, the Mo<sup>6+</sup> -doped  $\delta$ -MnO<sub>2</sub> sample shows a surface area of about 52.57 m<sup>2</sup> g<sup>-1</sup>, followed by the Rh<sup>3+</sup>-doped and pure  $\delta$ -MnO<sub>2</sub> samples, with surface areas of approximately 43 m<sup>2</sup> g<sup>-1</sup> and 30 m<sup>2</sup> g<sup>-1</sup>, respectively. In

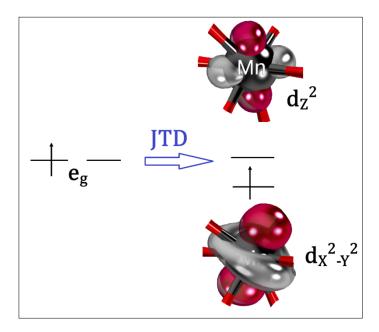


**Figure S3:** N<sub>2</sub> adsorption/desorption isotherm and BJH pore size distribution (inset) curves of the (a) pure δ-MnO<sub>2</sub>; (b) Fe-doped δ-MnO<sub>2</sub>; (c) Mo-doped δ-MnO<sub>2</sub> and; (d) Rh-doped δ-MnO<sub>2</sub> samples, respectively.

addition, the insets of Figure 5 (a-d) show the Barrett- Joyner–Halenda (BJH) pore size distribution curves, which demonstrates an average pore volume of  $\sim 0.061$  cm<sup>3</sup> g<sup>-1</sup> for pure, 0.125 cm<sup>3</sup> g<sup>-1</sup> for Fe<sup>3+</sup> doped,  $\sim 0.105$  cm<sup>3</sup> g<sup>-1</sup> for Mo<sup>6+</sup> doped and 0.092 cm<sup>3</sup> g<sup>-1</sup> for Rh<sup>3+</sup> doped  $\delta$ -MnO<sub>2</sub> samples. Since a large surface area inherently offers more electroactive sites, thereby enhanced Faradaic reactions, a uniform and well distributed pores can also significantly augment energy conversion efficiency by shortening the diffusion pathways of charge carriers. [23] The Rh<sup>3+</sup> doped sample initially shows better result than pure  $\delta$ -MnO<sub>2</sub> but Fe<sup>3+</sup> and Mo<sup>6+</sup> doping appears to be much more promising and comparatively exhibits excellent porous properties than pure and Rh<sup>3+</sup> doped sample. The large surface area with mesoporous structure


of Fe<sup>3+</sup> and Mo<sup>6+</sup> doped samples may facilitate sufficient electrolyte into internal pores followed by offering of plenty of electrochemical active sites and enough spaces to tackle the mechanical stresses occurred during numerous Zn<sup>2+</sup> ions discharge/charge processes.

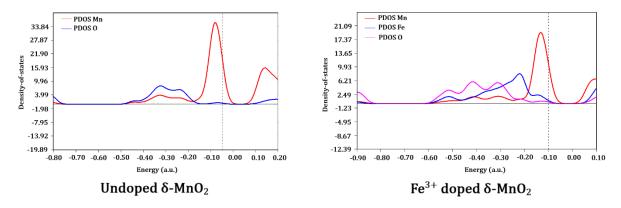
### 5. Computational Details:


For the sake of computation, we have considered a unit cells of δ-MnO<sub>2</sub> and Fe doped δ-MnO<sub>2</sub> and optimized the geometry using PBE0/def2-TZVP level. <sup>47</sup> Harmonic vibrational frequency calculations confirm that the optimized geometries are at their local minima with all real values of the Hessian matrix. All these calculations were performed using GAUSSIAN16 suite of program. <sup>48</sup> Projected density of states (PDOS) calculations was performed using Multiwfn program code. <sup>49</sup>

#### **5.1 Results and Discussion:**

Figure S4 shows the optimized geometries of undoped  $\delta$ -MnO<sub>2</sub> and Fe doped  $\delta$ -MnO<sub>2</sub>. In the undoped  $\delta$ -MnO<sub>2</sub>, the axial Mn-O bonds are longer (1.93 Å) than the equatorial Mn-O bond distances (1.87 Å). This is a clear indication of Jahn-Teller (JT) distortion. Due to the unsymmetrical occupancies of  $e_g$  set of d orbital ( $d_Z^2$  and  $d_{X^2-Y^2}$ ) in Mn<sup>3+</sup> state, elongation along Z-axis arises which lowers the symmetry and removes the degeneracy (Figure S5). At 5% Fe<sup>3+</sup> doping, JT distortion almost vanishes making the axis Mn-O and equatorial Mn-O bond lengths almost equal (1.88 Å axial and 1.87 Å equatorial). Thus, from the geometrical point of view, it is clear that Fe<sup>3+</sup> doping to  $\delta$ -MnO<sub>2</sub> reduces JT distortion.




**Figure S4**. Optimized geometries of (a) undoped  $\delta$ -MnO<sub>2</sub> and (b) Fe<sup>3+</sup> doped  $\delta$ -MnO<sub>2</sub>. Bond lengths are in Å.



**Figure S5**. Splitting of  $e_g$  set due to JT distortion in  $\delta$ -MnO<sub>2</sub> with the lower energy  $d_{X^2-Y^2}$  being singly occupied in the distorted  $\delta$ -MnO<sub>2</sub> complex.

We also tried to optimize the geometries of the Rh and Mo doped  $\delta$ -MnO<sub>2</sub> structures, however, the unit cell completely lost symmetry and resulted in unoptimized structure. This might be due to the mismatch in the size of Rh and Mo compared to that Mn, thereby replacing Mn<sup>3+</sup> ions by Rh<sup>3+</sup> and Mo<sup>3+</sup> in  $\delta$ -MnO<sub>2</sub> may destroy the structural unity. Therefore, the theoretical results will be discussed on the undoped  $\delta$ -MnO<sub>2</sub> and Fe<sup>3+</sup> doped  $\delta$ -MnO<sub>2</sub> only.

To understand why Fe<sup>3+</sup> doping relaxes JT distortion, we plotted the density of states of both  $\delta$ -MnO<sub>2</sub> and Fe<sup>3+</sup> doped  $\delta$ -MnO<sub>2</sub> (Figure S6). It is evident that d-band of Fe overlaps with the d-band of Mn, thereby indicating a possibility that Fe<sup>3+</sup> will either oxidize Mn<sup>3+</sup> to JT distortion relaxed Mn<sup>4+</sup> state or reduce Mn<sup>3+</sup> to Mn<sup>2+</sup>. It should be noted that both Mn<sup>4+</sup> and Mn<sup>2+</sup> do not show JT distortion. Calculation of the natural charge at the central Mn atom indicates that there is reduction of positive charge from 0.78 e to 0.23 e in going from  $\delta$ -MnO<sub>2</sub> to Fe<sup>3+</sup> doped  $\delta$ -MnO<sub>2</sub>. This indicates that Fe<sup>3+</sup> has reduced Mn<sup>3+</sup> to Mn<sup>2+</sup> and this one electron reduction process mediated by Fe<sup>3+</sup> relaxes the JT distortion.



**Figure S6**. Projected density of states (PDOS) for undoped δ-MnO<sub>2</sub> and Fe<sup>3+</sup> doped δ-MnO<sub>2</sub>.

Table S3: A comparison between the specific capacities of our work and previously reported  $\delta$ -MnO<sub>2</sub> electrodes.

| S.  | Material                      | Morphology               | Specific Capacity /Cycle Number/                                  | Ref.     |
|-----|-------------------------------|--------------------------|-------------------------------------------------------------------|----------|
| No. |                               |                          | Current densities                                                 |          |
| 1.  | δ-MnO <sub>2</sub>            | Nanosheets               | 126 mAh g <sup>-1</sup> after 100 cycles at 100 mAg <sup>-1</sup> | 8        |
| 2.  | Ca doped δ-MnO <sub>2</sub>   | Nanoflower               | 124 mAh g <sup>-1</sup> at 1000 cycles at 1.5 Ag <sup>-1</sup>    | 24       |
| 3.  | N and S doped δ- $MnO_2$      | Nanoflower               | 120 mAh g <sup>-1</sup> at 1500 cycles at 1 Ag <sup>-1</sup>      | 25       |
| 4.  | δ-MnO <sub>2</sub>            | Flower-like              | 70 mAh g <sup>-1</sup> after 100 cycles at 100 mAg <sup>-1</sup>  | 42       |
| 5.  | Ni doped δ-MnO <sub>2</sub>   | Nanoparticles            | 72 mAh g <sup>-1</sup> after 600 cycles at 1 Ag <sup>-1</sup>     | 43       |
| 6.  | δ-MnO <sub>2</sub> / graphite | Nanoflower               | 114 mAh g <sup>-1</sup> after 100 cycles at 400 mAg <sup>-1</sup> | 44       |
| 7.  | δ-MnO <sub>2</sub> /CNT       | Flower-like              | 96 mAh g <sup>-1</sup> after 100 cycles at 400 mAg <sup>-1</sup>  | 45       |
| 8.  | Fe doped δ-MnO <sub>2</sub>   | Flower-like microspheres | 48.74 mAh g <sup>-1</sup> at 200 cycles at 0.5 Ag <sup>-1</sup>   | 46       |
| 9.  | Fe doped δ-MnO <sub>2</sub>   | Nanoflower               | 100.51 mAh g <sup>-1</sup> at 530 cycles at 2 C                   | Our work |
|     | Mo doped δ-MnO <sub>2</sub>   | Hawthorn like            | 155.2 mAh g <sup>-1</sup> at 530 cycles at 2 C                    |          |
|     | Rh doped δ-MnO <sub>2</sub>   | Nanoflower               | 83.03 mAh g <sup>-1</sup> at 530 cycles at 2 C                    |          |