

Supporting Information

Seed-mediated construction of bimetallic FeCo clusters on N-doped mesoporous carbon for bifunctional electrocatalysis in rechargeable Zn-air batteries

Yilun Zhao^{a,c,d,e,#} Mengwei Duan^{b,#}, Zhengbin Tian^{a,c,d*}, Wenquan Wang^{a,c,d,e}, Xiaohui Deng^{a,c,d}, Bing Yu^{b,*} and Guang-Hui Wang^{c,c,d,e*}

^a Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China

^b College of Chemistry and Chemical Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China

^c Shandong Energy Institute, Qingdao 266101, China

^d Qingdao New Energy Shandong Laboratory, Qingdao 266101, China

^e University of Chinese Academy of Sciences, Beijing 100049, China

[#] These authors contribute equally to this work.

* Corresponding author. Email: wanggh@qibebt.ac.cn; yubing198@qdu.edu.cn; tianzb@qibebt.ac.cn.

Experimental section

Materials

All chemicals are of analytical grade and used without further purification. 3-aminophenol (3-AP) was obtained from J&K Chemicals Technology Co. Ltd. Pluronic® F127 (PEO₁₀₆-PPO₇₀-PEO₁₀₆) was purchased from Sigma-Aldrich (St. Louis, MO, USA). Co. Ltd (Shanghai, China). Oleic acid (OA), hexamethylenetetramine (HMT), K₃[Co(CN)₆], and K₃[Fe(CN)₆] were obtained from Sinopharm Chemical Reagent. Co. Ltd (Shanghai, China). The commercial Pt/C (20%) catalyst was obtained from Johnson Matthey. The commercial RuO₂ (20%) catalyst was obtained from Macklin Biochemical Co. Ltd (Shanghai, China). The Nafion solution (5 wt%) was obtained from DuPont.

Materials characterization

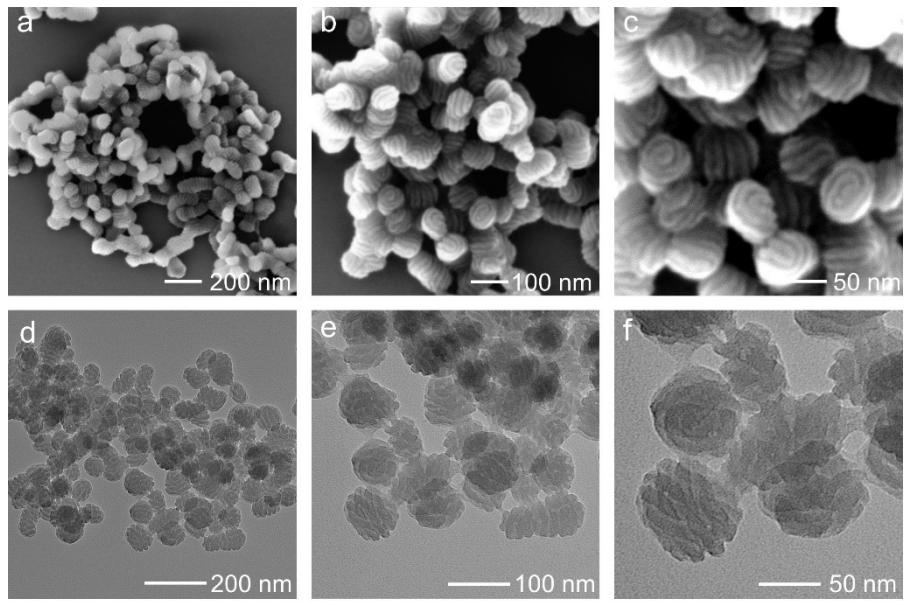
The morphology of samples was examined by ZEISS GeminiSEM 360 microscope (SEM) and Hitachi-7650 transmission electron microscope (TEM) with an acceleration voltage of 10 kV and 100 kV, respectively. High-resolution transmission electron microscope (HRTEM) images, high-angle annular dark field scanning transmission electron microscope (HAADF-STEM) images and elemental mapping images were recorded on FEI Talos F200S instrument at an acceleration voltage of 200 kV. X-ray diffraction (XRD) patterns were measured at room temperature using a Bruker D8 Advance X-ray diffractometer at 40 kV and 40 mA with Cu K_α radiation ($\lambda = 1.5406 \text{ \AA}$). X-ray photoelectron spectroscopy (XPS) measurements were conducted on a Thermo Scientific K-Alpha using Al K_α ($h\nu = 1486.6 \text{ eV}$) radiation equipped with 500 μm X-ray spot at $3 \times 10^{-10} \text{ mbar}$ and all the binding energy data were calibrated by C 1s (284.6 eV). The peak fitting was analyzed using XPSPeak software with Shirley-type background and Lorentzian-Gaussian shapes and signals were referenced by Handbook of Monochromatic XPS Spectra. The metal contents of the samples were determined using an inductively coupled plasma-optical emission spectrophotometer (ICP-OES; Agilent 5110, USA). Nitrogen content was analyzed using a Vario EL cube elemental analyzer (Elementar, Germany). Nitrogen sorption isotherms were measured with a Micromeritics ASAP 2460 instrument at 77 K. Prior to the measurements, the sample was degassed at 200 °C for 6 h. The specific surface areas and pore size distribution curves were calculated from the adsorption branch.

Electrochemical measurements

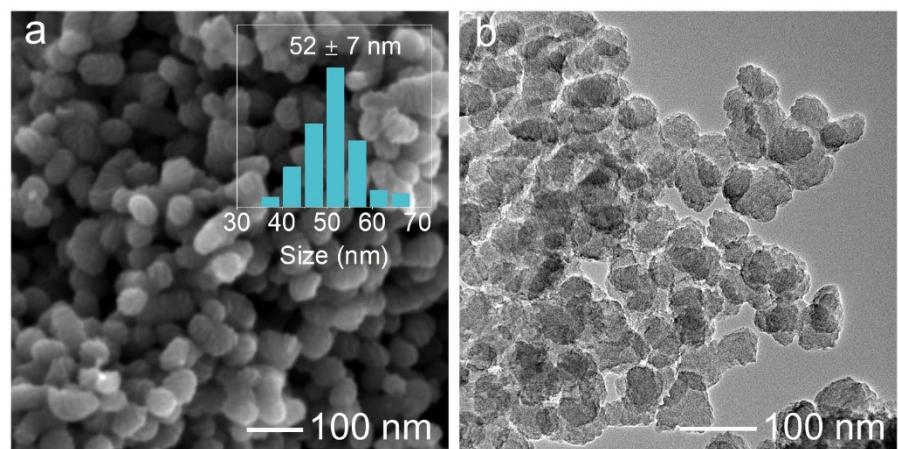
The electrochemical measurements were performed using a three-electrode system with a graphite electrode as the counter electrode, Ag/AgCl (saturated KCl solution) as the reference electrode, a rotating disk electrode (RDE) made of glassy carbon (GC, 4 mm in diameter) coated with the sample as the working electrode and an aqueous O₂-saturated 0.1 M KOH solution for ORR or Ar-saturated 1 M KOH for OER as the electrolyte. All potentials were reported versus the standard reversible hydrogen electrode (RHE). The working electrodes were prepared as follows: 10 mg of sample was ultrasonically dispersed in 975 μL of ethanol and 25 μL of Nafion solution to obtain a homogeneous ink. Afterward, 5 μL of the prepared catalyst ink (0.05 mg) was dropped on the polished electrode surface to achieve catalyst loadings of 0.4 mg cm⁻² for ORR and 0.7 mg cm⁻² for OER.

Linear sweep voltammetry (LSV) was performed with a scan rate of 10 mV s⁻¹ (5 mV s⁻¹ for OER) with 1600 rpm rotation speeds at room temperature for ORR. The ORR stability of the electrocatalysts was examined by accelerated deterioration tests (ADT) with a scan rate of 50 mV s⁻¹ for 5,000 cycles between 0.6 and 1.0 V (vs RHE). The electrochemical impedance spectroscopy data were collected for the electrodes at the half wave potential ($E_{1/2}$).

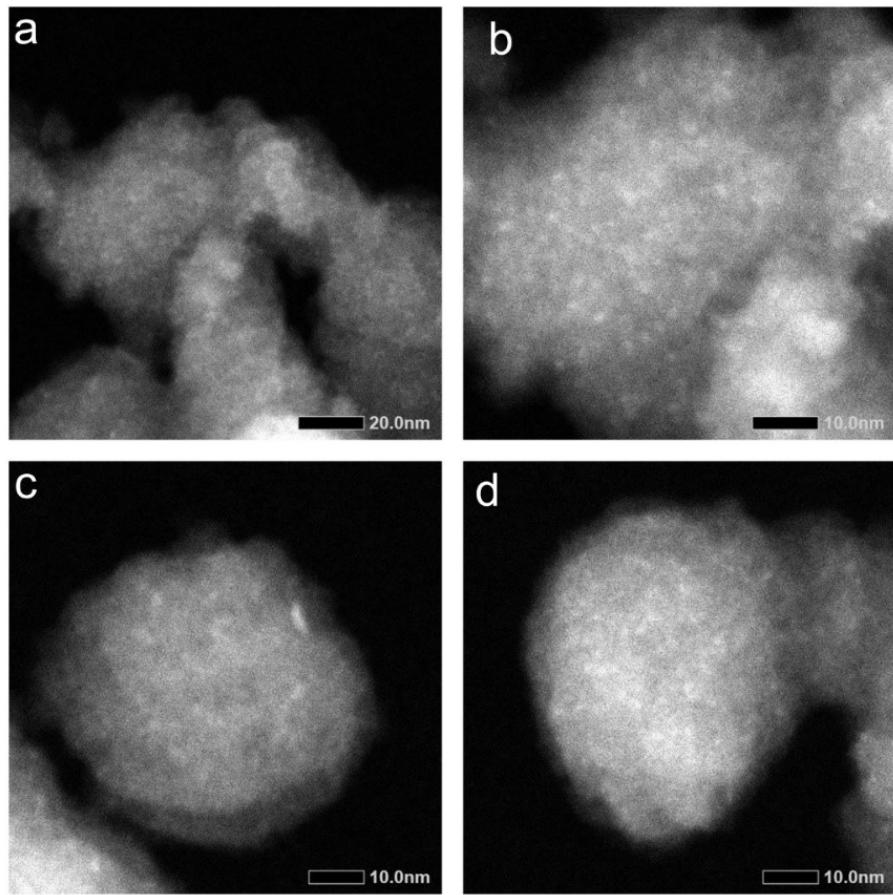
Rotating ring-disk electrode (RRDE) measurements were conducted to investigate the H₂O₂ yield and the electron transfer number (n). The RRDE electrode was scanned at 10 mV s⁻¹ with the ring potential being kept at 1.25 V (vs RHE). The H₂O₂ yield (H₂O₂%) and n were calculated by the following equations:

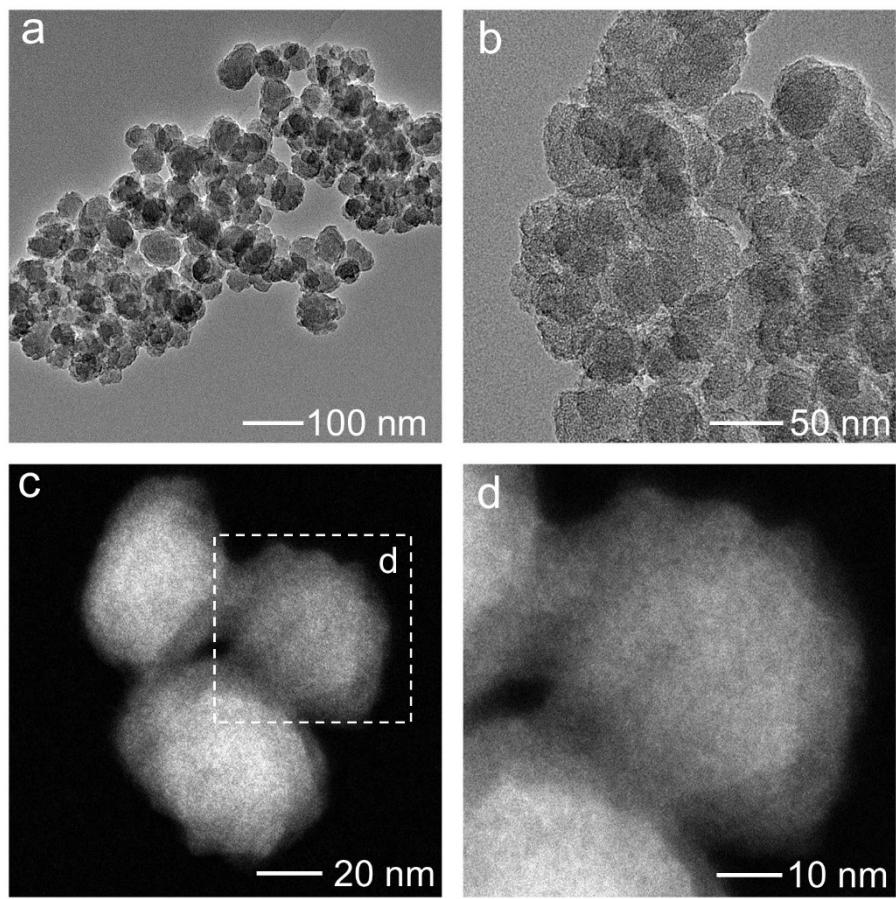

$$H_2O_2\% = 200 \times \frac{\frac{I_r}{N}}{\frac{I_r}{N} + I_d}$$

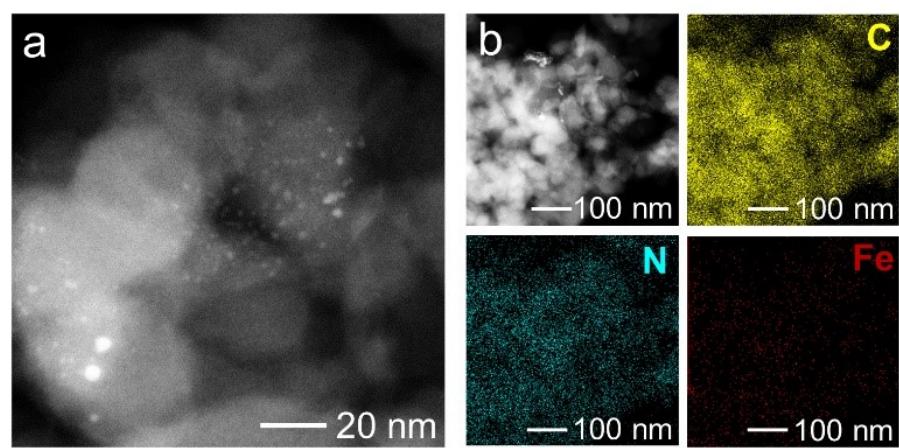
$$n = 4 \times \frac{I_d}{\frac{I_r}{N} + I_d}$$

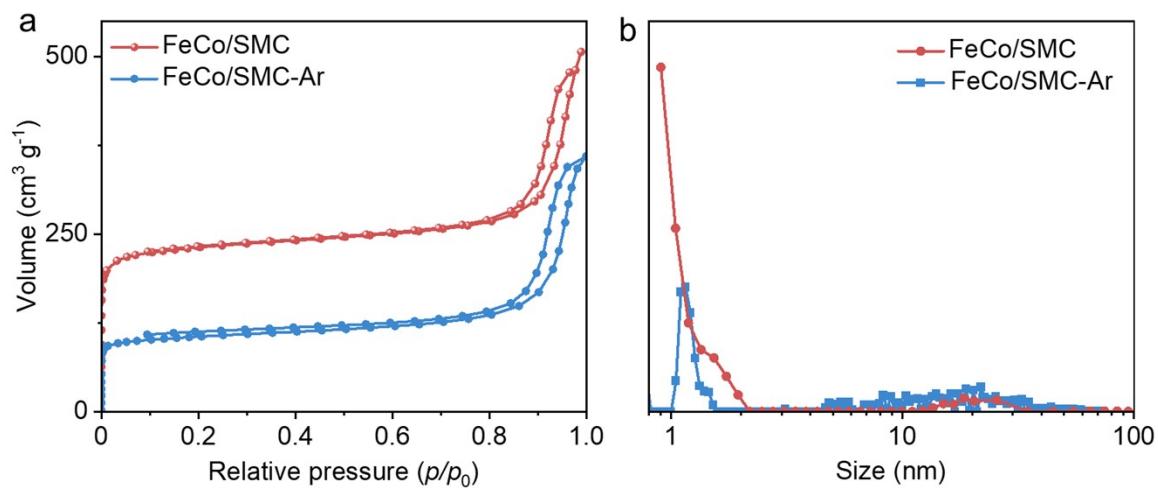

where I_d is the disk current, I_r is the ring current, and $N = 0.37$ is the current collection efficiency of the Pt ring.

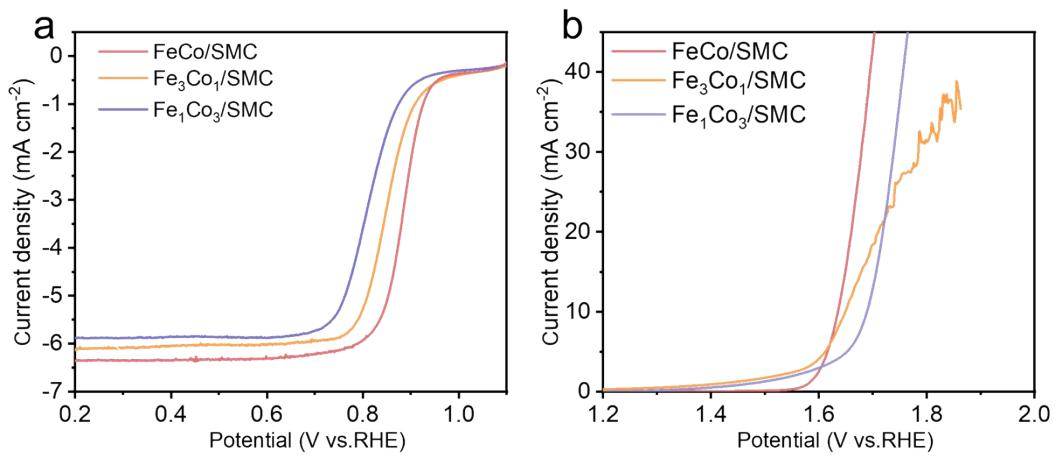
Re-ZABs Assembly and Measurements

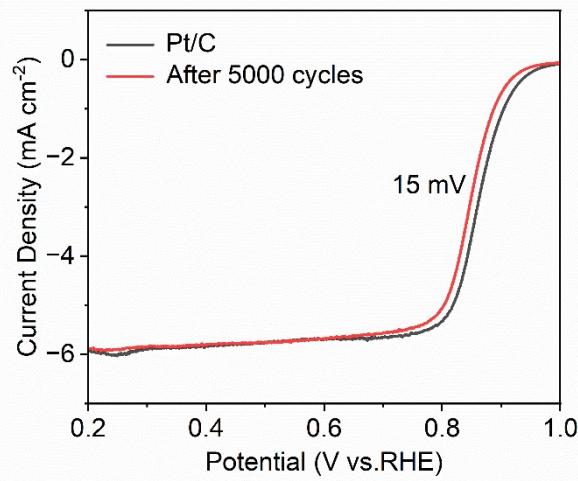

The homemade Re-ZABs were assembled by using polished zinc foil (30 and 150 μm) as the anode and aqueous solution containing 6 M KOH with 0.2 M zinc acetate as the electrolyte. The as-prepared catalysts or commercial coated on carbon paper were used as the air cathode. The loading amount of the catalysts on carbon paper was 1.5 mg/cm² for both as-prepared catalysts and commercial catalysts. The discharge/charge polarization curves were measured using CHI 760E. For the cycling stability test, the Re-ZABs based on FeCo/SMC and Pt/C with RuO₂ (with a mass ratio of 1:1) were assembled. The galvanostatic discharge/charge cycling stability for ZABs was measured using a LANE (CT3002A) instrument with 15 min for discharging and 15 min for charging under ambient conditions.

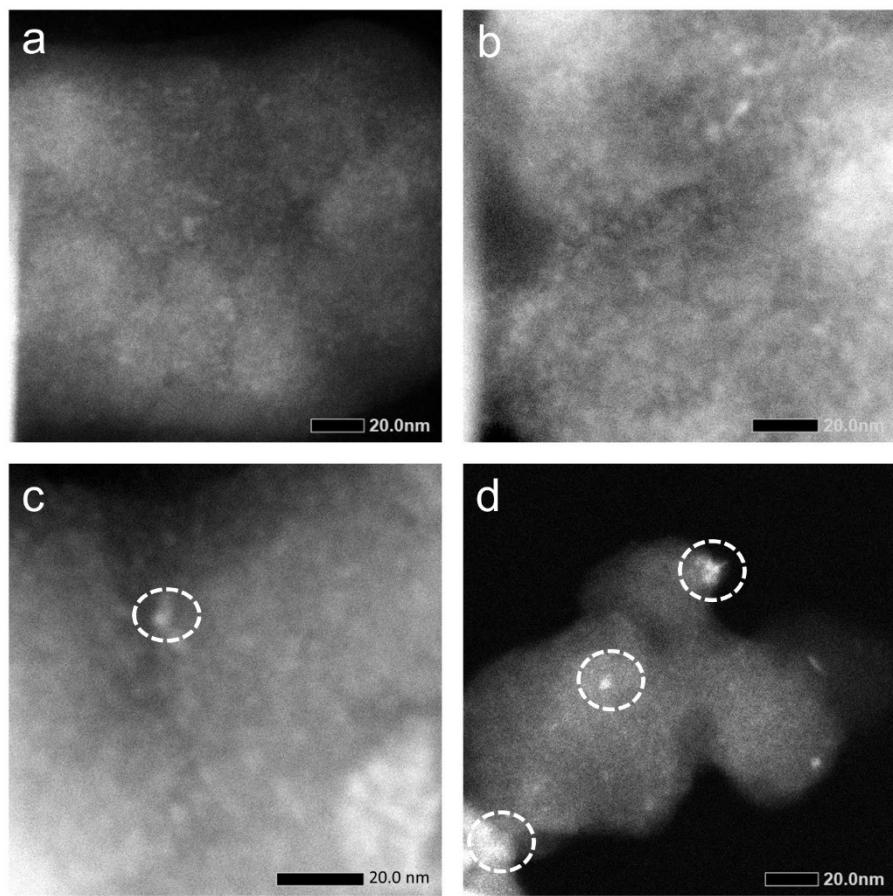

Fig. S1. (a-c) SEM and (d-f) TEM images of SMP.

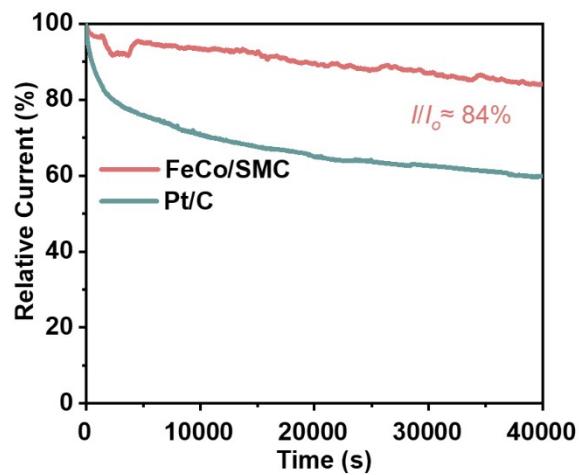

Fig. S2. (a) SEM and (b) TEM images of FeCo/SMC (inset in a is the size distribution of SMC).

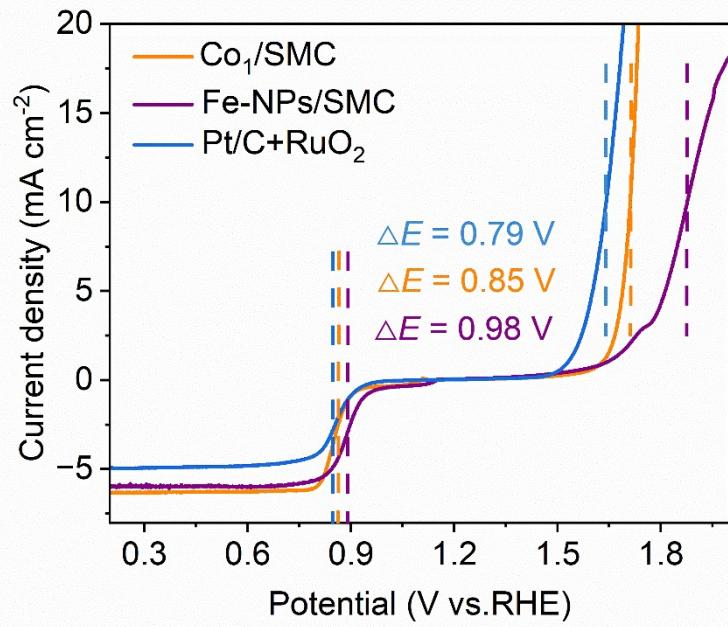

Fig. S3. HAADF-STEM images of FeCo/SMC.

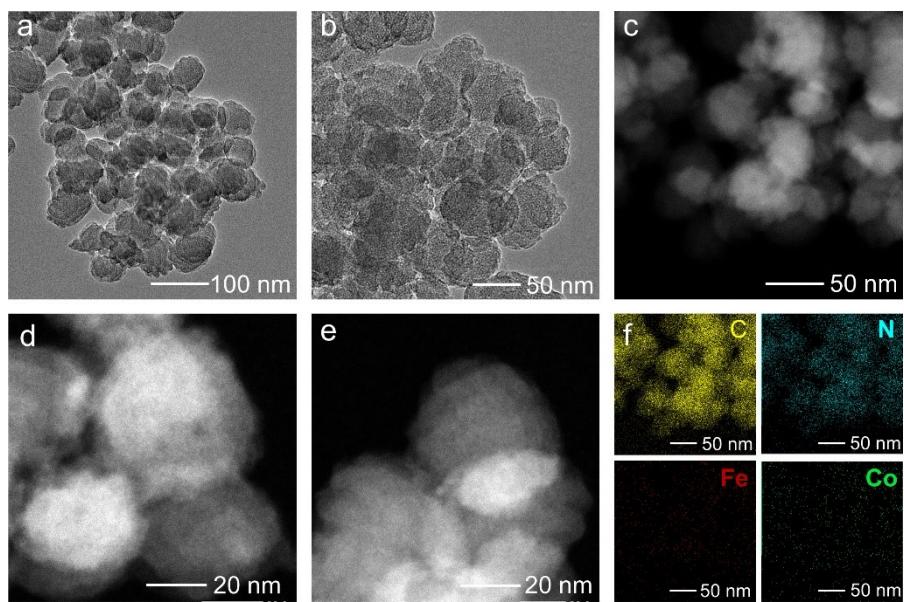

Fig. S4. (a,b) TEM and (c,d) HAADF-STEM images of Co₁/SMC.


Fig. S5. HAADF-STEM and EDX elemental images of Fe-NPs/SMC.


Fig. S6. (a) N_2 sorption isotherms and (b) pore size distributions of FeCo/SMC and FeCo/SMC-Ar.


Fig. S7. ORR LSV curves and (b) OER LSV curves of Fe₁Co₃/SMC, Fe₃Co₁/SMC and FeCo/SMC.


Fig. S8. ORR LSV curves of Pt/C before and after 5000 cycles.


Fig. S9. HAADF-STEM images of FeCo/SMC after use.

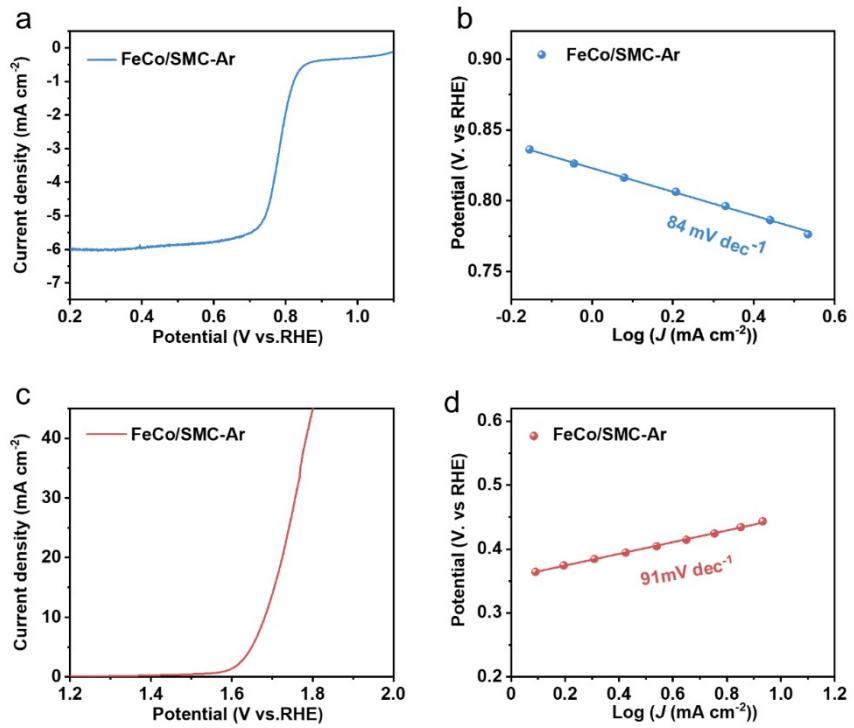

Fig. S10. Chronoamperometry curves of FeCo/SMC and Pt/C at 0.7 V vs RHE.

Fig. S11. ΔE value of Co_1/SMC , $\text{Fe-NPs}/\text{SMC}$ and Pt/C+RuO_2 .

Fig. S12. (a,b) TEM images, (c-e) HAADF-STEM images and (f) corresponding EDX elemental images of FeCo/SMC-Ar.

Fig. S13. (a) ORR LSV polarization curve and (b) Tafel slope of FeCo/SMC-Ar, (c) OER LSV polarization curve and (d) Tafel slope of FeCo/SMC-Ar.

Table S1. Textural parameters and chemical composition of FeCo/SMC and FeCo/SMC-Ar.

Sample	Textual properties		Chemical composition		
	S_{BET} (m^2/g)	V_{total} (cm^3/g)	C wt%	N wt%	H wt%
FeCo/SMC	897	0.78	80.8	9.0	2.0
FeCo/SMC-Ar	412	0.54	79.7	7.3	2.1

Table S2 Summary of bifunctional activities of carbon supported transition metal-based catalysts.

No.	Catalysts	$E_{1/2}$ (V vs RHE)	$E_{j=10}$ (V vs RHE)	ΔE ($E_{j=10}$ - $E_{1/2}$) (V vs RHE)	Reference
1	FeCo/SMC	0.89	1.609	0.72	This work
2	Co ₃ Fe ₇ /NC	0.85	1.59	0.74	<i>Carbon Energy</i> , 2025 , 7, e682
3	Ag/Co/Co ₃ O ₄ @NC	0.853	1.563	0.71	<i>ChemPhysChem</i> 2025 , 26, e202500496
4	Fe ₈₀₀ -HZIF8	0.84	1.527	0.687	<i>J. Energy Storage</i> 2025 , 137, 118723
5	P/Co-N-C-2	0.80	1.668	0.86	<i>J. Alloy. Compd.</i> 2025 , 1040, 183507
6	FeCo/NC-7	0.92	1.580	0.66	<i>J. Power Sources</i> 2025 , 644, 236996
7	A-Co-Fe/NCF-CoNP	0.89	1.58	0.69	<i>Small</i> 2025 , 21, e06084
8	FeCo-NBC	0.88	1.534	0.66	<i>ACS Sustainable Chem. Eng.</i> 2025 , 13, 13979
9	CoFe@NC-5	0.84	1.597	0.757	<i>Phys. Chem. Chem. Phys.</i> 2025 , 27, 14504
10	CoFe-Co _x N@NOALC	0.82	1.702	0.882	<i>Chinese Chem. Lett.</i> 2025 , 36, 110403
11	Fe-N-C/Gra-600	0.862	1.743 V	0.881	<i>ChemCatChem</i> 2025 , 17, e00731
12	Co-NSP-HPC	0.898	1.590	0.69	<i>Appl. Catal. B-Environ. Energy</i> 2025 , 365, 124889
13	(Fe ₃ C, Fe ₃ P)/NC	0.85	1.727	0.88	<i>ACS Appl. Energy Mater.</i> 2025 , 8, 529
14	CoNi-NCNT	0.81	1.52	0.71	<i>J. Colloid Interf. Sci.</i> 2025 , 683, 631
15	B-Co/CoSe ₂ @NSeC	0.865	1.600	0.735	<i>Appl. Catal. B-Environ. Energy</i> 2025 , 362, 124725
16	MPFeNi@NC-900	0.895	1.613	0.718	<i>J. Energy Storage</i> 2025 , 105, 114740
17	FeN ₄ /MoO _x	0.902	1.567	0.665	<i>Adv. Funct. Mater.</i> 2025 , 35, 2416215
18	P-FeNi-NPC	0.845	1.55	0.705	<i>Small</i> 2025 , 21, 2402762
19	Co ₃ S ₄ @NCNT/NCHS	0.80	1.46	0.66	<i>J. Alloy. Compd.</i> 2024 , 1008, 176679
20	CoFe-FeNC	0.876	1.526	0.65	<i>Appl. Catal. B-Environ. Energy</i> 2024 , 359, 124485
21	FeCo ₅ -NC	0.908	1.670	0.762	<i>Electroanal. Chem.</i> 2024 , 965, 118369
22	FeMn-N/S-C-1000	0.924	1.617	0.693	<i>J. Energy Chem.</i> 2024 , 90, 610

Table S2 (contd.)

No.	Catalysts	$E_{1/2}$ (V vs RHE)	$E_{j=10}$ (V vs RHE)	$\Delta E (E_{j=10} - E_{1/2})$ (V vs RHE)	Reference
23	FeCo/N-CF	0.886	1.672	0.786	<i>J. Energy Chem.</i> 2023 , <i>76</i> , 470
24	Co ₁₄ Fe ₁ -CNTF	0.82	1.480	0.66	<i>Adv. Mater. Interfaces</i> 2023 , <i>10</i> , 2201817
25		0.925	1.623	0.698	<i>Angew. Chem. Int. Ed.</i> 2023 , <i>62</i> , e202219191
26	CoP ₃ /-CeO ₂ /C-2	0.752	1.569	0.817	<i>Appl. Catal. B-Environ.</i> 2023 , <i>321</i> , 122029
27	CoNi@NCNTs/CC	0.82	1.56	0.74	<i>Appl. Catal. B-Environ.</i> 2022 , <i>317</i> , 121764
28	NiFe@C@Co CNFs	0.87	1.600	0.73	<i>Small</i> 2022 , <i>18</i> , 2200578
29	3D Co/N-C	0.84	1.56	0.72	<i>Chem. Eng. J.</i> 2022 , <i>433</i> , 134500
30	Co-N-CCNFMs	0.84	1.559	0.719	<i>Energy Storage Mater.</i> 2022 , <i>47</i> , 365
31	Fe-Mo-N-C/800	0.856	1.66	0.804	<i>Chem. Eng. J.</i> 2022 , <i>449</i> , 137705
32	FeCo-NC	0.877	1.579	0.702	<i>ACS Catal.</i> 2022 , <i>12</i> , 1216
33	Co-CoN ₄ @NCNs	0.83	1.54	0.71	<i>Adv. Funct. Mater.</i> 2022 , <i>32</i> , 2207331
34	D-Co@NC	0.852	1.718	0.866	<i>Chem. Eng. J.</i> 2022 , <i>431</i> , 133734
35	FeCo-1/NSC	0.82	1.555	0.735	<i>J. Energy Chem.</i> 2021 , <i>56</i> , 64
36	FeNi/N-LCN	0.835	1.57	0.735	<i>Nano Lett.</i> 2021 , <i>21</i> , 3098
37	FeNi/N-C-900	0.81	1.643	0.833	<i>Chem Asian J.</i> 2021 , <i>16</i> , 1592