

# 1    **Electronic Supplementary Information**

## 2    **Electrocatalyst-induced kinetic modulation of anion-based redox 3                    mediators in aqueous iron-chromium redox flow batteries**

4    Vithiya Muralidharan,‡ Ryeong-ah Kim,‡ Ji-Eun Jang, and Hyun-Wook Lee\*

5    School of Energy and Chemical Engineering, Ulsan National Institute of Science and  
6    Technology (UNIST), Ulsan 44919, Republic of Korea.

7    \*Email: [hyunwooklee@unist.ac.kr](mailto:hyunwooklee@unist.ac.kr)

8    ‡ These authors have contributed equally.

## 9 Experimental Procedures

### 10 Synthesis Procedure

11 ***Preparation of potassium hexacyanochromate (K<sub>3</sub>[Cr(CN)<sub>6</sub>])*** The K<sub>3</sub>[Cr(CN)<sub>6</sub>]  
12 compound was synthesized by adapting previously reported protocols. Initially,  
13 chromium(III) acetate hydrate (Cr(C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>)<sub>3</sub>.H<sub>2</sub>O, 5 g; JUNSEI, Cr 21-25%) was  
14 dissolved in 20 mL of distilled water (DI water) under ambient conditions to produce a  
15 deep green solution. In parallel, potassium cyanide (KCN, 8.93 g; Alfa Aesar, 96.0%)  
16 was dissolved in 30 mL of DI water and brought to a vigorous boil under continuous  
17 stirring. With active stirring (300 rpm), the Cr(C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>)<sub>3</sub>.H<sub>2</sub>O solution was added slowly  
18 to the boiling KCN solution. Immediately following the addition, activated charcoal  
19 (0.24 g; Supelco) was introduced as a reaction facilitator. The reaction mixture was  
20 maintained to boil with constant agitation for 5 min to ensure complete complexation.  
21 The hot suspension was filtered under reduced pressure to remove the activated  
22 charcoal, yielding a clear bright red filtrate. The solution was partially concentrated by  
23 evaporation and subsequently cooled gradually to room temperature, exploiting the  
24 inverse solubility profile of K<sub>3</sub>[Cr(CN)<sub>6</sub>] to induce crystallization. The resulting  
25 crystalline product was isolated by vacuum filtration and washed with methanol and  
26 ethanol followed by drying at 40°C in vacuum to obtain pale yellow product.

27 ***Electrodeposition of metal on separable glassy carbon electrode (SGCE)***  
28 Bismuth (Bi), tin (Sn) and indium as anti-catalysts were decorated on GCE by  
29 electrodeposition. For each metal, a 20 ml deposition solution was prepared by  
30 dissolving 10 mM of the corresponding metal chloride, Bismuth (III) chloride (BiCl<sub>3</sub>;  
31 Alfa Aesar, 99.9%), Tin (II) chloride (SnCl<sub>2</sub>; Alfa Aesar, 98.0%), Indium (II) chloride  
32 (InCl<sub>3</sub>; Sigma Aldrich 98.0%) in 1 M hydrochloric acid (HCl), which served as a

33 constant supporting electrolyte across all the experiments. The counter (CE) and the  
34 reference electrode (RE) were platinum (Pt) wire and Ag/AgCl electrode (3 M KCl),  
35 respectively. Two different 3 mm GCEs were employed as the working electrode (WE),  
36 with the integrated GCE for electrochemical half-cell analysis and separable type for  
37 optical microscopy (OM). Prior to electrodeposition, each GCE was polished  
38 sequentially with 1.0, 0.3, 0.05  $\mu\text{m}$  alumina suspensions ( $\text{Al}_2\text{O}_3$ ) on both nylon and  
39 microcloth pads and then sonicated in ethanol for 15 minutes to ensure a clean  
40 electrode surface free from residual contaminants. Electrodeposition was conducted  
41 in potentiostatic mode using chronoamperometry with an EC-lab potentiostat  
42 (BioLogic), with deposition times varied systematically as needed for each metal. The  
43 applied potentials specific to each metal chloride precursor are detailed in **Table S1**.

44 ***Electrodeposition of anti-catalyst on graphite felt (GF)*** Graphite felt electrodes of  
45 dimension  $5 \text{ cm}^2$  (2.0 cm  $\times$  2.5 cm) (XF-30a, TOYOBO) was heat treated at 500 °C  
46 for 5 h in ambient atmosphere which increases their surface wettability. The thermally  
47 treated graphite felt (TGF) were rinsed with distilled water and dried at 40 °C for 24 h  
48 prior to electrodeposition process. Bismuth was deposited onto TGF from a 0.2 M  
49 bismuth deposition solution, prepared by dissolving  $\text{BiCl}_3$  (Alfa Aesar, 99.9%) in 2.5 M  
50 HCl. Deposition was conducted for under two different durations of 5 and 10 minutes  
51 with an interval of 20 s for each duration, aimed at achieving more uniform and  
52 controlled bismuth deposition.

### 53 **Electrochemical characterization**

54 **Cyclic voltammetry (CV)** CV measurements were performed using a conventional  
55 three-electrode setup consisting of Hg/HgO as the RE (1 M KOH), a platinum wire as  
56 the CE, and a 3 mm integrated GCE as WE. Prior to all electrochemical  
57 characterization, the WE were polished to a mirror finish through sequential  
58 mechanical polishing with alumina suspensions of 1.0, 0.3, 0.05  $\mu\text{m}$  particle sizes,  
59 followed by ultrasonic cleaning in ethanol for 15 minutes to remove residual  
60 contaminants. CV tests were conducted in 0.1 M synthesized  $\text{K}_3[\text{Cr}(\text{CN})_6]$  dissolved in  
61 1 M NaCN (Alfa Aesar, 95% min) solution. For comparison to the posolyte side, the  
62 CV was performed in a solution containing 0.05 M  $\text{K}_4[\text{Fe}(\text{CN})_6]$  (Sigma Aldrich, 98.5 -  
63 102.0%) dissolved in 1 M NaCl (Alfa Aesar, 99.0%). The CVs were performed with  
64 ohmic drop correction using the ZIR compensation function in EC-Lab (BioLogic),  
65 applying 85 % compensation of the solution resistance.

66 **Linear Sweep Voltammetry (LSV)** LSV analyses were conducted using the same  
67 three-electrode system described above. The measurements were carried out in 1 M  
68 NaCN solution without active material to assess the baseline electrochemical  
69 response of the system.

70 **Electrochemical Impedance Spectroscopy (EIS)** EIS were conducted under  
71 potentiostatic control at -1.1 V vs SHE using a sinusoidal AC perturbation of 30 mV  
72 amplitude. The frequency range spanned from 3 MHz to 100 mHz. All EIS  
73 measurements were performed in 0.1 M synthesized  $\text{K}_3[\text{Cr}(\text{CN})_6]$  dissolved in 1 M  
74 NaCN. Prior to all electrochemical analyses, the electrolyte solutions were purged with  
75 nitrogen gas ( $\text{N}_2$ ) for 10 minutes to remove dissolved oxygen and maintain an inert  
76 atmosphere.

77 **Stability test** The stability test has been carried out for two half cells. One comprising  
78 of 0.1 M  $K_3[Cr(CN)_6]$  in 2 M NaCN and the other with 0.1 M  $CrCl_3$  in 1 M HCl. The  
79 working electrode was the Bi deposited SGCE, a Hg/HgO reference electrode filled  
80 with 1 M KOH and a Pt plate (1 cm × 1 cm) served as the reference and counter  
81 electrode, respectively.

82 **Full cell test** The full cell test was performed with a posolyte containing 40 mL of 0.4  
83 M  $K_4[Fe(CN)_6] \cdot 3H_2O$  (Sigma-Aldrich, 98.5%) with 2.5 M NaCl (Sigma-Aldrich, ≥  
84 99.5%) as supporting electrolyte and a negolyte containing 30 mL of 0.4 M  $K_3[Cr(CN)_6]$   
85 (as-synthesized) with 2.0 M NaCN (Sigma-Aldrich, 97%) and 0.5 M NaOH (Sigma-  
86 Aldrich, 98%) as the supporting electrolyte. The flow cell assembly (TS CHEM)  
87 comprises of the bismuth deposited TGF of dimension 5 cm<sup>2</sup> (2.0 cm × 2.5 cm), bipolar  
88 plate, copper current collector, and Nafion membrane (NRE-212, Nafion perfluorinated  
89 membrane, Sigma-Aldrich, 0.002 inch thick) was soaked in 0.1 M HCl for 30 min and  
90 rinsed in DI water. The Bi-TGF in a stack cell were compressed ~70%. The electrolyte  
91 circulation was facilitated by pump drives (JenieWell, JWSE600) using Norprene  
92 tubing (Masterflex Norprene, 3.175 mm thickness, O.D. 6.35 mm and I.D. 3.18 mm).  
93 The flow rate was maintained at ~40 mL min<sup>-1</sup> (50 rpm) throughout the experiment.  
94 The components of the full cell were assembled in a commercial flow battery  
95 framework. Prior to cycling, the system was optimized by circulating the electrolyte  
96 through the electrode for 1 hour without external current to ensure complete wettability  
97 of the electrode. Galvanostatic charge-discharge experiments were carried out using  
98 an EC-Lab Potentiostat (BioLogic) under ambient conditions. The charging and  
99 discharging cycles were performed at a constant current of 500 mA ( $± 100$  mA cm<sup>-2</sup>)  
100 with the voltage range of 1.0 to 1.9 V rather than the explicit SOC control. The effective  
101 SOC window accessed during the cycle was therefore evaluated from the discharge

102 capacity relative to the theoretical capacity of the negolyte. For a 0.4 M negolyte, the  
103 theoretical capacity is 10.72 Ah L<sup>-1</sup>. The cell delivered a stable initial discharge  
104 capacity of 9.81 Ah L<sup>-1</sup>, corresponding to a capacity utilization of approximately 91.5  
105 %. As the lower cut-off voltage corresponds to the fully discharged state, this analysis  
106 indicates that the full cell was cycled across an effective operational SOC range of  
107 approximately 0 % to 91.5 %.

108

109 **Material Characterization**

110 **Scanning Electron Microscopy (SEM)** SEM analysis was conducted to characterize  
111 the morphology of bismuth electrodeposited on graphite felt samples. Imaging was  
112 performed with an accelerating voltage of 5kV. The samples were dried in vacuum  
113 oven at 40° for 24 h before imaging. Samples were mounted on conductive tape and  
114 observed under vacuum conditions. Magnifications from  $\times 1.00k$  to  $\times 5.00k$  were used  
115 to investigate the distributed of deposited bismuth. Elemental mapping was conducted  
116 to visualize the distribution and localization of key elements within the electrodeposited  
117 felt as shown in Figure S9.

118 **Ultraviolet Visible Spectroscopy (UV-Vis)** The dissolution of bismuth in the  
119 electrolyte was investigated using UV-Vis spectroscopy. For this investigation, 5 mL  
120 of electrolyte after the stability test were drawn out and diluted with 1.0 NaCN to 0.001  
121 M (1/100 times dilution).<sup>1</sup> Bismuth nitrate solution was used as the control standard for  
122 comparison.

123 **Optical Microscopy (OM)** The surface morphology of the separable glassy carbon  
124 electrode was examined using an optical microscope (OLYMPUS BX53M) equipped  
125 with a digital imaging system (Techsan Co. Ltd, Tech Xcam III camera). Following  
126 electrodeposition at varying durations, the electrode was thoroughly rinsed with 25%  
127 ammonia solution (Emsure) to remove residual electrolyte. Subsequently, the  
128 electrode was dried in a box furnace at 60°C to ensure complete removal of moisture  
129 and contaminants prior to imaging.

## 130 Measurement of kinetic parameters

131 **Diffusion coefficient ( $D_O$  and  $D_R$ )** The diffusion coefficient was obtained using  
132 Randles-Sevick equation for reversible system. It was adaptable because (1) linear  
133 relationship was observed between peak current and square root of scan rate and  
134 (2) peak potential difference was less than 300 mV which was relevant to quasi-  
135 reversible region. The equation uses the relationship between the cathodic peak  
136 current density,  $i_{p,c}$ , and the diffusion coefficient,  $D_o$ , since the half-cell was prepared  
137 by dissolving the synthesized  $K_3[Cr(CN)_6]$  without  $K_4[Cr(CN)_6]$ . But for the  $[Fe(CN)_6]^{4-}$   
138  $^{/3-}$ , since the electrolyte contained identical quantities of  $[Fe(CN)_6]^{3-}$  and  $[Fe(CN)_6]^{4-}$ ,  
139  $i_{p,c}$  and  $i_{p,a}$  were estimated respectively.

$$140 \quad i_{p,c} = (2.69 \times 10^5) \cdot n^{\frac{3}{2}} \cdot D_O^{\frac{1}{2}} \cdot C_O^* \cdot v^{\frac{1}{2}} \quad (1)$$

$$141 \quad i_{p,a} = (2.69 \times 10^5) \cdot n^{\frac{3}{2}} \cdot D_R^{\frac{1}{2}} \cdot C_R^* \cdot v^{\frac{1}{2}} \quad (2)$$

142  $i_{p,c}$  Cathodic peak current density ( $A \text{ cm}^{-2}$ )

143  $i_{p,a}$  Anodic peak current density ( $A \text{ cm}^{-2}$ )

144  $n$  Number of electrons transferred for the redox reaction

145  $D_O$  Diffusion coefficient of oxidative species ( $\text{cm}^2 \text{ s}^{-1}$ )

146  $D_R$  Diffusion coefficient of reductive species ( $\text{cm}^2 \text{ s}^{-1}$ )

147  $C_O^*$  Bulk concentration of oxidative species ( $\text{mol cm}^{-3}$ )

148  $C_R^*$  Bulk concentration of reductive species ( $\text{mol cm}^{-3}$ )

149  $v$  Scan rate ( $V \text{ s}^{-1}$ )

150 Where the oxidative species is reduced to reductive species by accepting one electron  
151 ( $n = 1$ ). The CV was conducted with various scan rates (20, 40, 60, 80, 100, 150, and  
152 200 mV s<sup>-1</sup>).

153 **Standard Rate Constant ( $k_0$ )** For the [Cr(CN)<sub>6</sub>]<sup>3-</sup>, where the solution comprised  
154 predominantly the oxidative species, the charge transfer coefficient ( $\alpha$ ) was assumed  
155 to be 0.5. Given that the solution contained only [Cr(CN)<sub>6</sub>]<sup>3-</sup> and considering the nearly  
156 identical molar masses of the oxidized and reduced forms, the  $k_0$  was calculated using  
157 the following simplified form:

158 
$$k_0 = (\pi \cdot D_O \cdot f \cdot v)^{1/2} \cdot \Psi \quad (3)$$

159 Whereas in the case of [Fe(CN)<sub>6</sub>]<sup>4-3-</sup>, which contained equal concentrations of both  
160 oxidative and reductive species, the diffusion coefficients for each species were  
161 individually calculated.<sup>2</sup> Therefore, the  $k_0$  was calculated with using equation (4)  
162 without any simplification.

163 
$$k_0 = \left[ \frac{(\pi \cdot D_O \cdot f \cdot v)^{1/2}}{(D_O/D_R)^{\alpha/2}} \right] \cdot \Psi \quad (4)$$

164  $k_0$  Standard rate constant (cm s<sup>-1</sup>)

165  $D_O$  Diffusion coefficient of oxidative species (cm<sup>2</sup> s<sup>-1</sup>)

166  $D_R$  Diffusion coefficient of reductive species (cm<sup>2</sup> s<sup>-1</sup>)

167  $f = (n \cdot F) / (R \cdot T)$

168  $n$  is the number of electrons transferred for the redox reaction

169  $F$  is the Faraday constant (96485 C mol<sup>-1</sup>)

170  $R$  is the ideal gas constant (8.314 J mol<sup>-1</sup> K<sup>-1</sup>)

171 T is the absolute temperature in K (T = 298.15 K)

172  $v$  Scan rate (V s<sup>-1</sup>)

173  $\alpha$  Charge transfer resistance (0 <  $\alpha$  < 1)

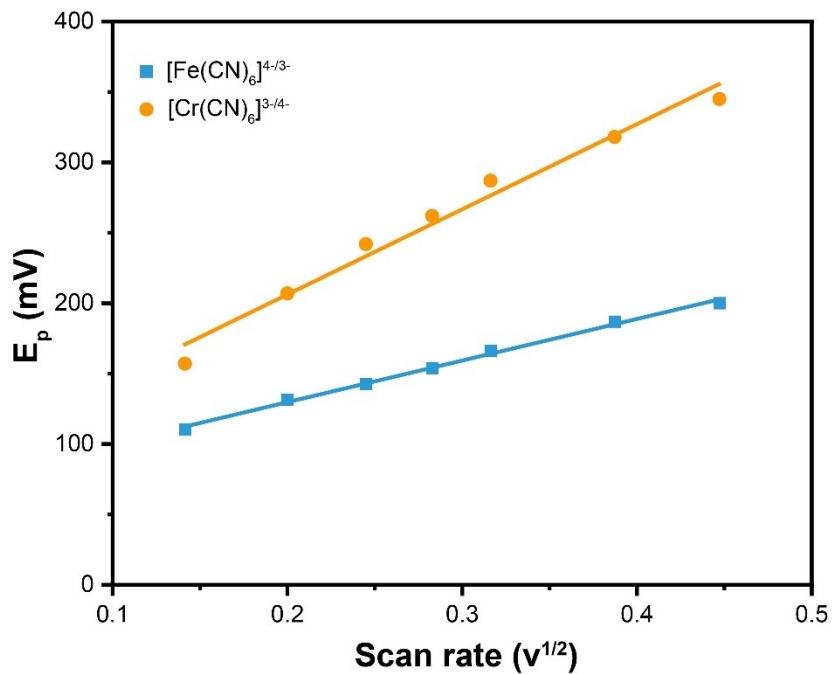
174  $\Psi$  Nicholson number

175  $\Psi$  is the Nicholson number that is related to peak potential difference ( $\Delta E_p$ )

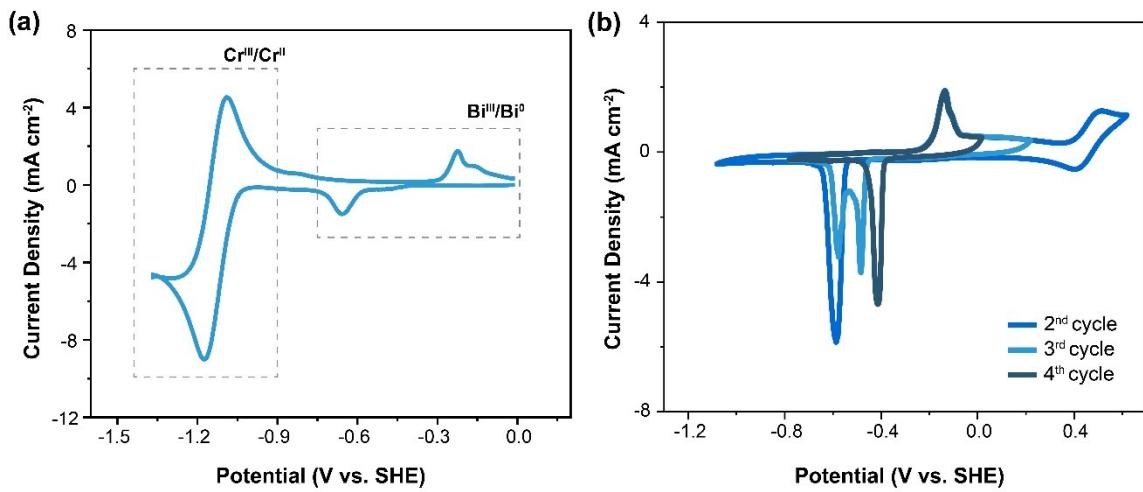
176 which was measured from the CV curves. The  $\Psi$  values has been obtained from

177 Nicholson's classic paper.<sup>3, 4</sup>

$$178 \quad \Psi = \frac{(-0.6228 + 0.0021 \Delta E_p)}{(1 - 0.017 \Delta E_p)} \quad (5)$$

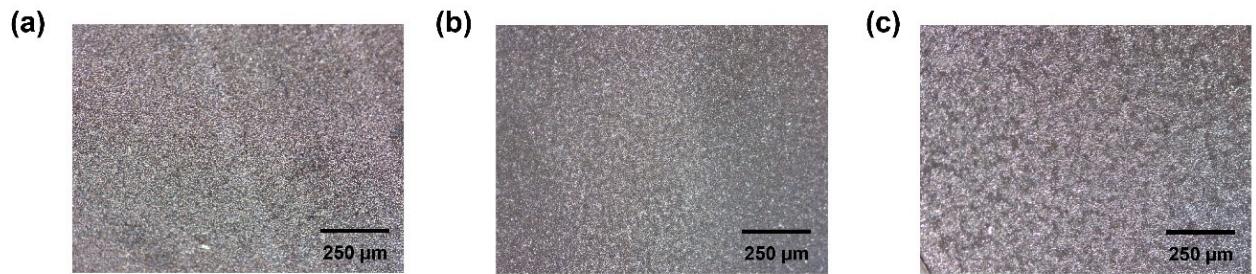

179 Herein the Nicholson dimensionless number is calculated by substituting the

180 peak potential separation in equation (5). **Table S3** covers the reversible rang up to


181 200 mV, but in our study the active species undergoes a quasi-reversible redox

182 reaction. Therefore, Klinger and Kochi method for an irreversible reaction was

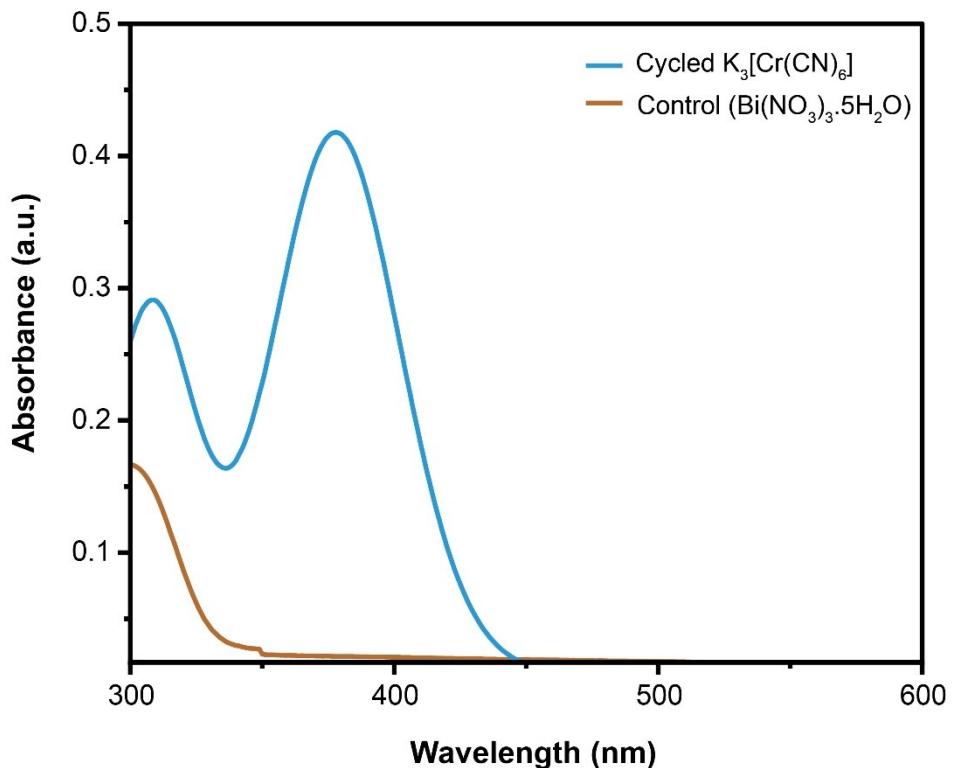
183 combined with the Nicholson method.<sup>5</sup>



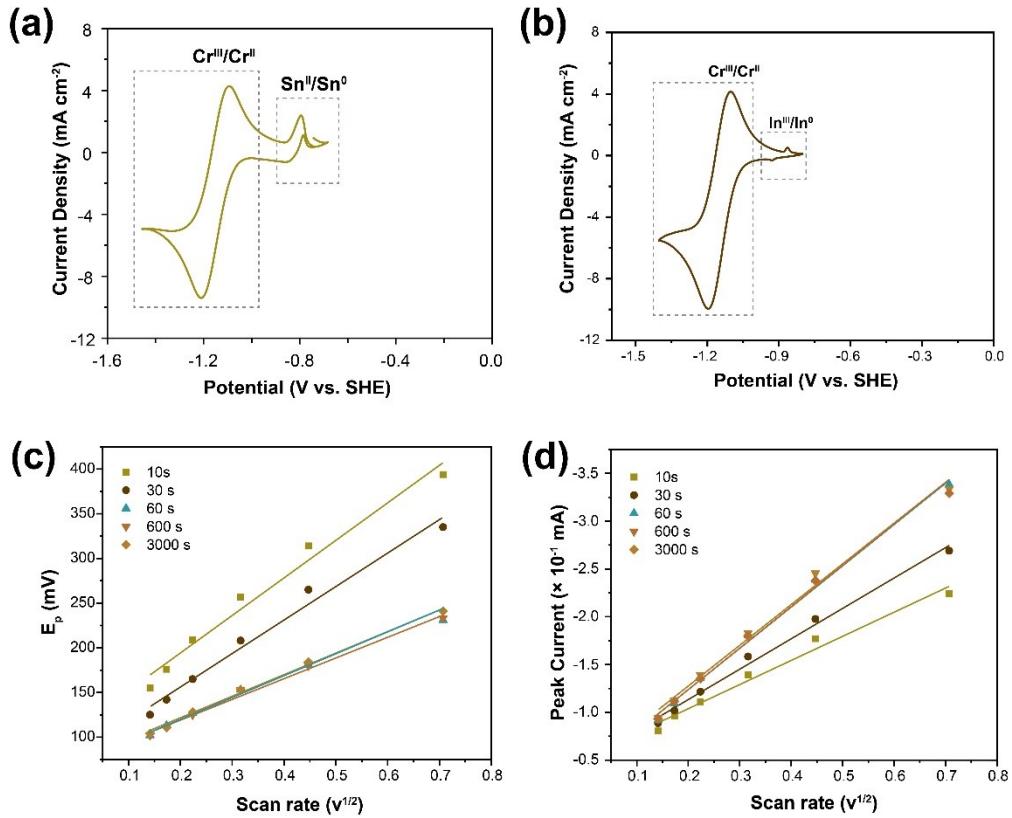

**Figure S1.** Peak potential separation linearly fitted as a function of square root of scan rate corresponding to  $[\text{Fe}(\text{CN})_6]^{4-/3-}$  and  $[\text{Cr}(\text{CN})_6]^{3-/4-}$  for the CV measured in  $[\text{Fe}(\text{CN})_6]^{4-/3-}$  at various scan rates from 20 to 200  $\text{mV s}^{-1}$  measured in 0.05 M  $\text{K}_3[\text{Fe}(\text{CN})_6]$  and 0.05 M  $\text{K}_4[\text{Fe}(\text{CN})_6]$  with 1 M NaCl as supporting electrolyte and  $[\text{Cr}(\text{CN})_6]^{3-/4-}$  at various scan rates from 20 to 200  $\text{mV s}^{-1}$  measured in 0.1 M  $\text{K}_3[\text{Cr}(\text{CN})_6]$  with 1M NaCN as supporting electrolyte, respectively.



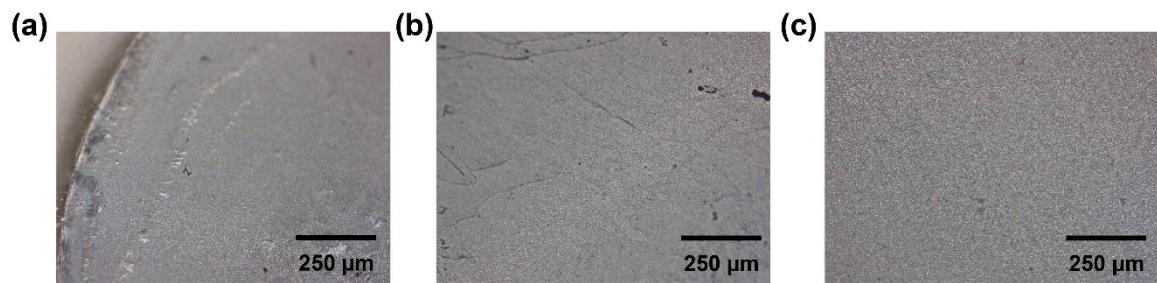
189 **Figure S2.** (a) CV of  $[\text{Cr}(\text{CN})_6]^{4-/3-}$  and  $\text{Bi}^{3+/0}$  with the SGCE modified with bismuth at a  
 190 scan rate of  $20 \text{ mV s}^{-1}$ . The left redox peaks correspond to the redox reaction between  
 191  $\text{Cr}^{3+}$  and  $\text{Cr}^{2+}$ ; the right redox peaks refer to the redox reaction between  $\text{Bi}^{3+}$  and  $\text{Bi}^0$  (b)  
 192 Repeated deposition/dissolution of CV curves of bismuth redox reaction,  
 193 demonstrating evolution of peak positions and current density at a scan rate of  $20 \text{ mV}$   
 194  $\text{s}^{-1}$ .


196

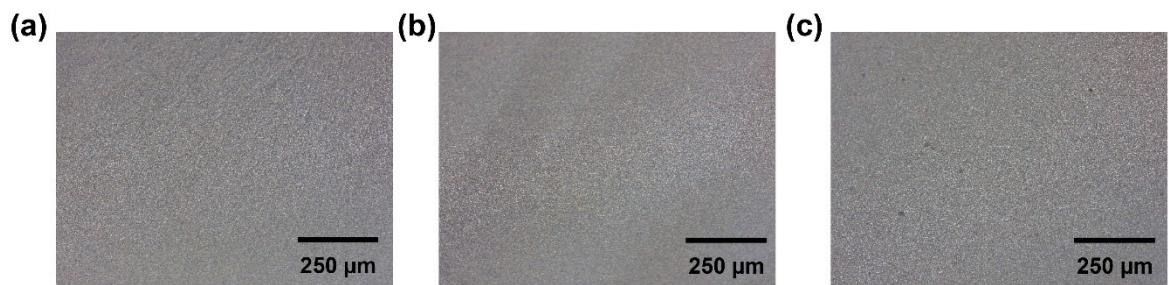



**Figure S3.** OM images of SGCE surface after bismuth deposition at (a) 30 s, (b) 40 s, and (c) 60 s.

197


198

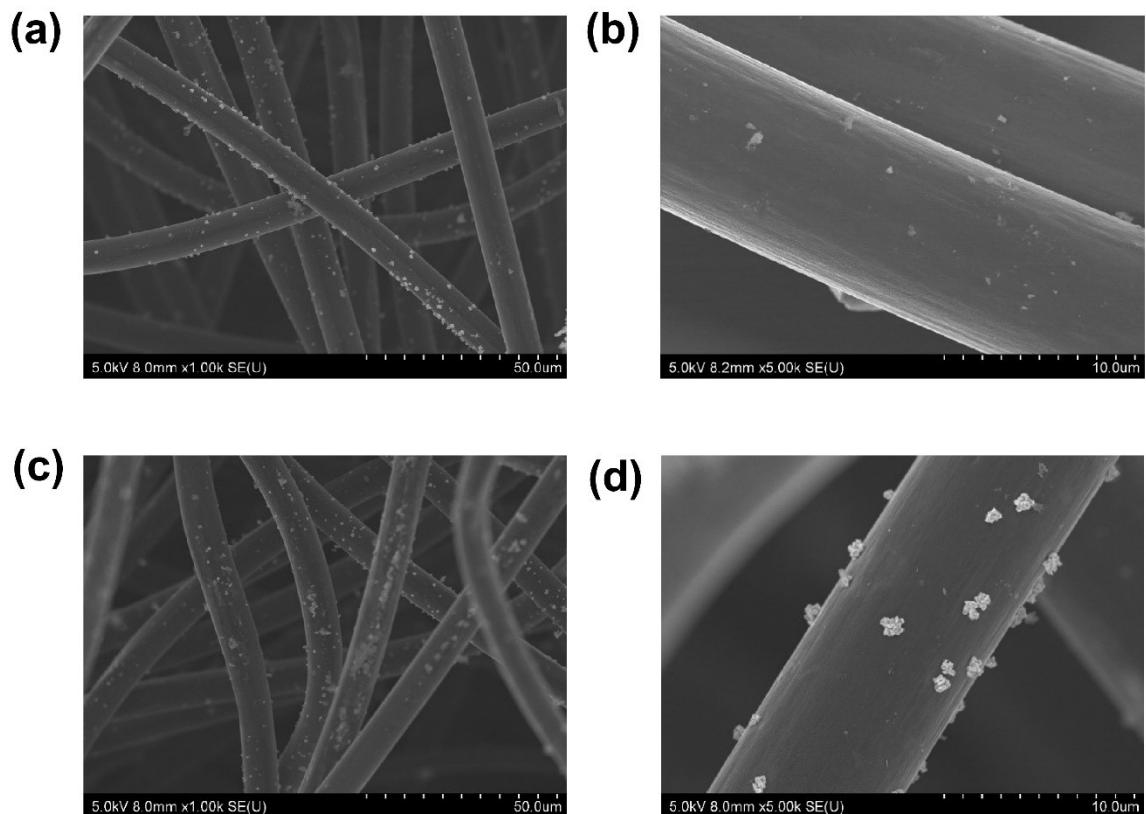



**Figure S4.** UV-vis spectrum of the  $K_3[Cr(CN)_6$ ] (blue) after the stability test compared with the bismuth nitrate (brown) spectrum demonstrating that there is no dissolution of bismuth into the electrolyte.



**Figure S5.** (a) CV of  $[\text{Cr}(\text{CN})_6]^{4-/3-}$  and  $\text{Sn}^{\text{II}/0}$  with the SGCE modified with tin at a scan rate of  $20 \text{ mV s}^{-1}$ . The left redox peaks correspond to the redox reaction between  $\text{Cr}^{\text{III}}$  and  $\text{Cr}^{\text{II}}$ ; the right redox peaks refer to the redox reaction between  $\text{Sn}^{\text{II}}$  and  $\text{Sn}^0$ . (b) CV of  $[\text{Cr}(\text{CN})_6]^{4-/3-}$  and  $\text{In}^{\text{III}/0}$  with the SGCE modified with indium at a scan rate of  $20 \text{ mV s}^{-1}$ . The left redox peaks correspond to the redox reaction between  $\text{Cr}^{\text{III}}$  and  $\text{Cr}^{\text{II}}$ ; the right redox peaks refer to the redox reaction between  $\text{In}^{\text{III}}$  and  $\text{In}^0$  (c) Peak potential separation and (d) Peak current linearly fitted against the square root of scan rate with Sn deposited SGCE at different deposition durations (10, 30, 60, 600, and 3,000 s).

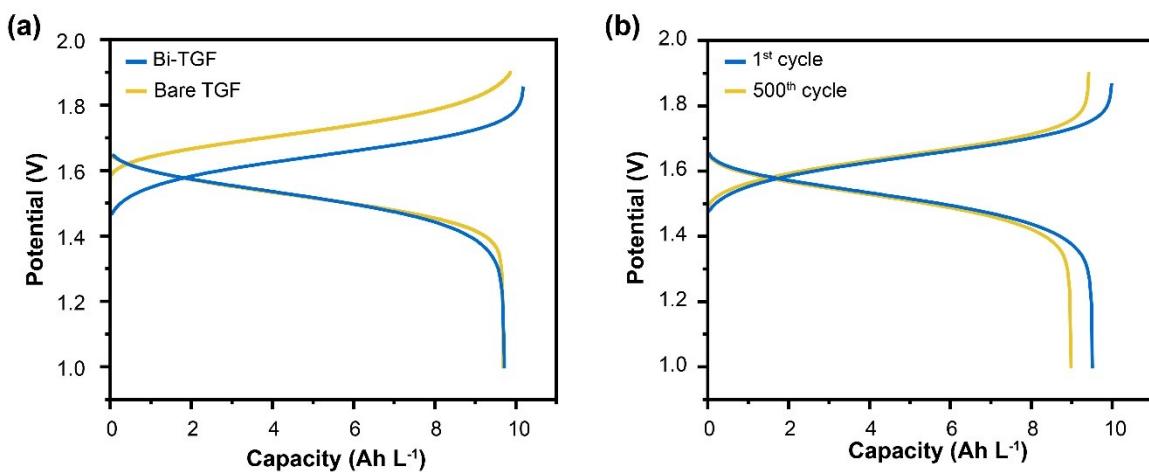



**Figure S6.** OM images of SGCE surface after tin deposition at **(a)** 30 s, **(b)** 60 s, and **(c)** 90 s.



**Figure S7.** OM images of SGCE surface after indium deposition at **(a)** 30 s, **(b)** 60 s, and **(c)** 90 s.

205

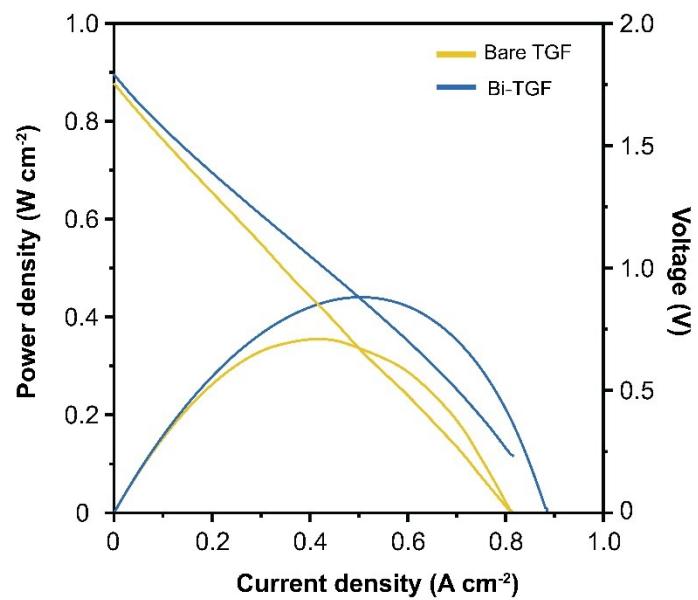

206



**Figure S8** SEM images of bismuth electrodeposited on carbon felt. **(a,b)** Morphology after 2.5 min deposition pulsed 2 times with 20 sec of rest, shows uniform deposition of Bi along the graphite felt. **(c,d)** Morphology after 5 min deposition pulsed 2 times with 20 sec of rest, shows a larger aggregated bismuth deposition.

207

208




**Figure S9** Galvanostatic charge-discharge voltage profiles for the full cell (a) Voltage profiles of Bi-TGF and bare TGF electrodes at current density of  $100 \text{ mA cm}^{-2}$ , illustrating lower overpotential for the Bi-TGF (b) Comparison of the 1<sup>st</sup> and 500<sup>th</sup> cycle for the Bi-TGF electrode, indicating minimal polarization growth and stable cycling behavior.

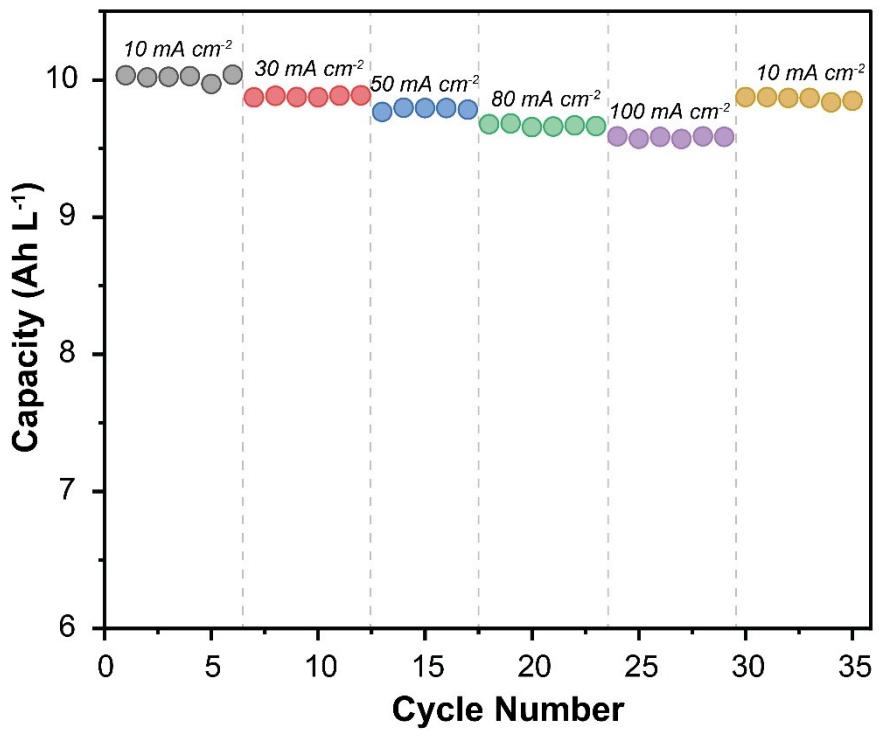
209

210 As shown in Figure S9b, the voltage-capacity profiles recorded at the 1<sup>st</sup> and  
 211 500<sup>th</sup> cycles for the Bi-TGF electrode are compared to evaluate the evolution of  
 212 polarization during extended cycling. The close overlap of both the charge and  
 213 discharge plateaus, together with the absence of significant growth in voltage  
 214 hysteresis, indicates minimal increase in polarization and negligible degradation of  
 215 interfacial reaction kinetics over prolonged operation. These observations  
 216 demonstrate that the kinetic enhancement imparted by the Bi-TGF electrode is  
 217 preserved throughout the extended cycling without alteration in the reaction pathway.

218



**Figure S10.** Polarization curves and power density as a function of current densities of full cell employing bare TGF and Bi-TGF electrode measured under identical conditions.

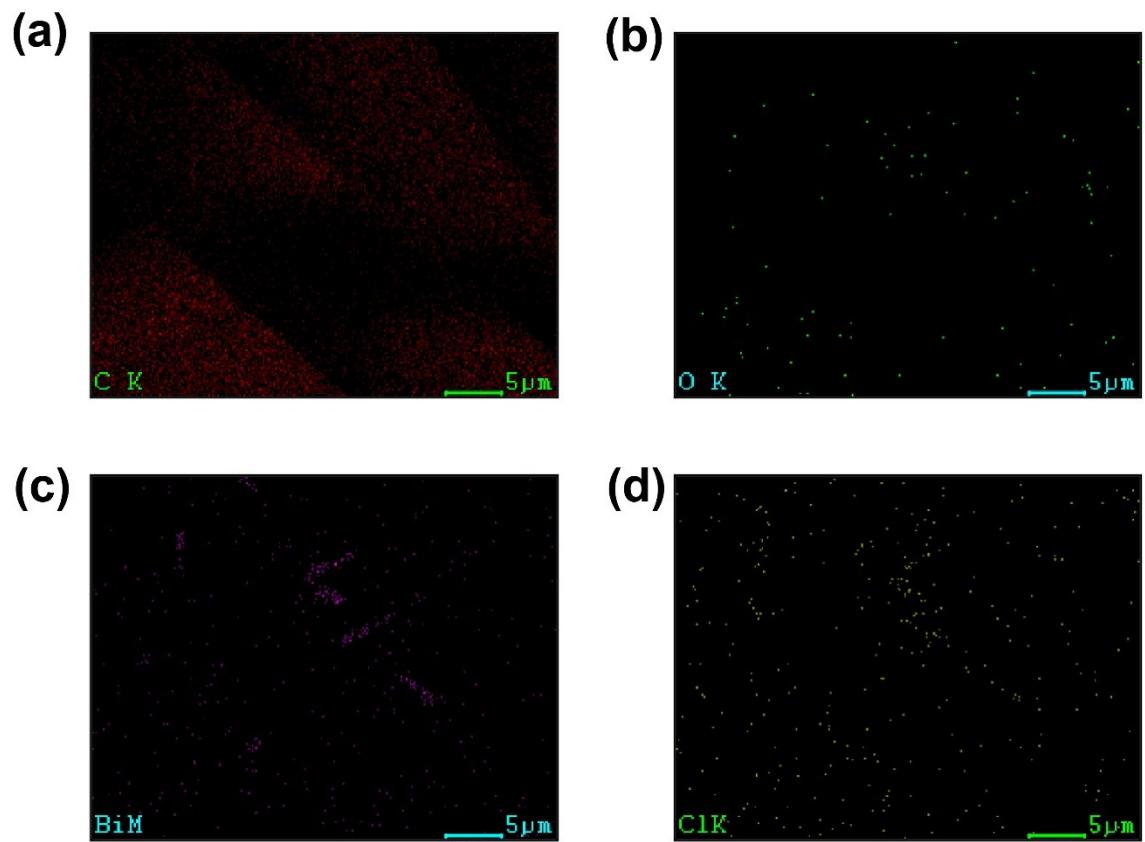

220 s

221

222

223

224




**Figure S11.** Rate capability performance of the full cell evaluated under stepwise varying current densities. The discharge capacity is plotted as a function of cycle number, and the applied current density is sequentially increased from  $10 \text{ mA cm}^{-2}$  to  $100 \text{ mA cm}^{-2}$ . The grey dashed lines indicate the transitions between different current densities.

225

226

227



**Figure S12.** Elemental mapping images of the bismuth deposited graphite felt **(a)** carbon **(b)** oxygen **(c)** bismuth **(d)** chlorine (The compositions were provided in Table S4).

231

232 **Table S1.** Electrodeposition solution composition and applied potential for metal  
233 electrodeposition

|    | Active material<br>(10 mM) | Supporting<br>material<br>(1 M) | Applied potential<br>(V vs SHE) |
|----|----------------------------|---------------------------------|---------------------------------|
| Bi | BiCl <sub>3</sub>          | HCl                             | -0.3                            |
| Sn | SnCl <sub>2</sub>          | HCl                             | -0.65                           |
| In | InCl <sub>3</sub>          | HCl                             | -0.9                            |

234

235

236

237 **Table S2.** The relationship between  $\psi$  and  $\Delta E_p$  obtained by Nicholson's method

238

239

240

241

242

243

244

245

246

247

248

249

250

|     | $\psi$ (dimensionless) | $\Delta E_p$ |
|-----|------------------------|--------------|
| 239 | 20                     | 61           |
| 240 | 7                      | 63           |
| 241 | 6                      | 64           |
| 242 | 5                      | 65           |
| 243 | 4                      | 66           |
| 244 | 3                      | 68           |
| 245 | 2                      | 72           |
| 246 | 1                      | 84           |
| 247 | 0.75                   | 92           |
| 248 | 0.5                    | 105          |
| 249 | 0.35                   | 121          |
| 249 | 0.25                   | 141          |
| 249 | 0.1                    | 212          |

251

252

**Table S3.** Slope and intercept for the evaluated metal deposited SGCE

|                                   | $i_{pa}/i_{pc}$ | Slope  | Intercept | $R^2$ |
|-----------------------------------|-----------------|--------|-----------|-------|
| <b><math>K_3[Fe(CN)_6]</math></b> | $i_{pa}$        | 2.131  | 0.173     | 0.987 |
|                                   | $i_{pc}$        | -2.993 | -0.115    | 0.998 |
| <b><math>K_3[Cr(CN)_6]</math></b> | $i_{pa}$        | 0.013  | 0.005     | 0.970 |
|                                   | $i_{pc}$        | -0.033 | -0.003    | 0.998 |
| <b><math>K_3[Cr(CN)_6]</math></b> | $i_{pa}$        | 0.153  | -0.003    | 0.994 |
|                                   | $i_{pc}$        | -0.196 | 0.009     | 0.999 |
| <b><math>K_3[Cr(CN)_6]</math></b> | $i_{pa}$        | 0.037  | 0.004     | 0.985 |
|                                   | $i_{pc}$        | -0.047 | -0.004    | 0.998 |
| <b><math>K_3[Cr(CN)_6]</math></b> | $i_{pa}$        | 0.029  | 0.005     | 0.945 |
|                                   | $i_{pc}$        | -0.037 | -0.005    | 0.990 |

253

254

255

256

| Deposition time | $R_s$ ( $\Omega$ ) | $R_{ct}$ ( $\Omega$ ) | $Q$ ( $F s^{n-1}$ )   | $n$  | $W$ ( $\Omega s^{-1/2}$ ) |
|-----------------|--------------------|-----------------------|-----------------------|------|---------------------------|
| 0 s             | 20.84              | 144.53                | $2.37 \times 10^{-5}$ | 0.85 | 62.4                      |
| 30 s            | 14.90              | 39.08                 | $9.64 \times 10^{-4}$ | 0.81 | 78.9                      |
| 40s             | 14.99              | 49.60                 | $1.43 \times 10^{-3}$ | 0.73 | 109.6                     |

257 **Table S4.** Electrochemical Impedance Spectroscopy fitting parameters

258

259

260

261

262

263

264

265 **Table S5.** Elemental mapping results of the Bi-TGF

266

267

268

269

270

271

272

273

274

275

276

277

| <b>Element</b> | <b>Mass Norm (%)</b> | <b>Atom (%)</b> |
|----------------|----------------------|-----------------|
| <b>C</b>       | 93.09                | 99.05           |
| <b>Bi</b>      | 5.78                 | 0.35            |
| <b>Cl</b>      | 0.70                 | 0.25            |
| <b>O</b>       | 0.43                 | 0.35            |
|                | 100.0                | 100.0           |

278 **Table S6.** Comparison of key electrochemical performance metrics for ICRFBs  
 279 reported in literature and present work

| Modified Electrode                                | Current density         | Coulombic efficiency (CE) | Voltage efficiency (VE) | Energy efficiency (EE) | Cycle life                         | References   |
|---------------------------------------------------|-------------------------|---------------------------|-------------------------|------------------------|------------------------------------|--------------|
| Bi-TGF                                            | 100 mA cm <sup>-2</sup> | 99.29 %                   | 75.82 %                 | 75.22 %                | 500 cycles                         | This work    |
| PBi/TCF (Gradient Bi-C electrode)                 | 120 mA cm <sup>-2</sup> | ~98 %                     | -                       | 81.36 %                | 500 cycles (Refreshed electrolyte) | <sup>6</sup> |
| TBCC (Bi modified carbon cloth)                   | 140 mA cm <sup>-2</sup> | ~ 98%                     | -                       | 82.9 %                 | 200 cycles                         | <sup>7</sup> |
| Bi/N-GF (Bismuth coated B-doped graphite felt)    | 60 mA cm <sup>-2</sup>  | 97.7 %                    | -                       | 85.8 %                 | 100 cycles                         | <sup>8</sup> |
| AgBi-TGF (Silver bismuth bimetallic modified TGF) | 60 mA cm <sup>-2</sup>  | 96.80 %                   | 70.73 %                 | 68.74 %                | 80 cycles                          | <sup>9</sup> |

280

281

282 REFERENCES

283 1. L. Jeftic and S. W. Feldberg, *J. Phys. Chem.*, 1971, **75**, 2381–2387.  
284 2. K. Gong, Q. R. Fang, S. Gu, S. F. Y. Li and Y. S. Yan, *Energy Environ. Sci.*,  
285 2015, **8**, 3515–3530.  
286 3. R. S. Nicholson and I. Shain, *Anal. Chem.*, 1964, **36**, 706–723.  
287 4. R. S. Nicholson, *Anal. Chem.*, 1965, **37**, 1351–1355.  
288 5. I. Lavagnini, R. Antiochia and F. Magno, *Electroanal.*, 2004, **16**, 505–506.  
289 6. M. Wu, S. M. Liu, H. F. Yuan, Z. C. Zhao, L. Qiao and X. K. Ma, *Adv. Mater.*,  
290 2025, **37**.  
291 7. Y. Liu, C. Guo, G. Wu, W. Lv, R. Zhou, W. Qiu, Y. Zhou, Q. Xu, C. Xu and Y. Niu,  
292 *Nano Research Energy*, 2025, **4**, e9120135.  
293 8. H. X. Che, Y. F. Gao, J. H. Yang, S. Hong, L. D. Hao, L. Xu, S. Taimoor, A. W.  
294 Robertson and Z. Y. Sun, *New Carbon Mater.*, 2024, **39**.  
295 9. R. Z. Li, Y. Guo, H. Yan, S. L. Yuan and M. Lin, *Chem. Commun.*, 2025, **61**,  
296 9302–9305.

297