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Figure S1. Randomly generated two-dimensional pore structures with porosity
ranging from 40% to 70%, where the black regions represent pores and the white
regions correspond to the LGLZO framework.



Figure S2. Schematic illustration of lithium-ion migration in different pore structures.
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Figure S3. Two-dimensional images (100 dpi x 500 dpi) of porous structures with
porosity ranging from 5% to 70%.



Figure S4. LGLZO green body after calcination for carbon removal and before
sintering.
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Figure S5. Variation of framework density and porosity with sintering time and
temperature.

The density was calculated from pellets with a diameter of 10 mm based on mass
and volume, while subsequent porosity measurements were performed using pellets
with a diameter of 18 mm.



Figure S6. Optical photographs of ceramic bodies.
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Figure S7. Phase evolution of the framework during the preparation process.

Intensitya.u.)

During the high-temperature sintering process of LLZO ceramics, significant
volatilization of lithium results in a decrease in lithium-ion concentration within the
lattice. This leads to the formation of enriched Li,0 liquid phases at grain boundaries.
Upon cooling, these liquid phases react with the doped Ga,O; to form LiGaO,.
Concurrently, if the precursor reaction is incomplete, La,Zr,0O; phases may remain.
The presence of these secondary phases severely impedes lithium-ion transport: the
discontinuous distribution of LiGaO, disrupts the continuity of grain boundary
conduction, while the non-lithium-ion-conducting La,Zr,0O; directly blocks transport
pathways. Collectively, these effects increase grain boundary impedance and reduce
overall ionic conductivity. However, subsequent heat treatment eliminates these
metastable secondary phases. LiGaO, decomposes to provide a lithium source, while
La,Zr,05 reacts with this lithium source and reintegrates into the lattice, ultimately
transforming into pure cubic LLZO.
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Figure S8. Variation of porosity with pore-forming agent content.

18.23

20

30.52

30

52.90

40

50



w
o o

3.02

- = N N
< o o1 o U

o o
)

lonic conductivity (mS cm™)
[=]

10 20 30 40 50
Pore-forming agent content (wt%)

Figure S9. Variation of ionic conductivity with pore-forming agent content.
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Figure S10. Variation of interfacial impedance with pore-forming agent content.
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Figure S11. Long-term cycling performance of Li/PLF-LiPF¢/Li cells at 25 °C under
a current density of 0.5 mA cm™2.
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Figure S12. Pore analysis of SEM-imaged specimens
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Figure S13. Comparison of lithium ion mobility between Li/ PGLF-LiPF¢/Li and Li/
Si0, -LiPF¢/Li symmetric cells.



A oy A ey =
Figure S14. SEM image of the anode—framework interface after 100 cycles at 1 C.

The battery was disassembled after 100 cycles at 1 C, followed by vacuum
drying at 40 °C for 24 h, and the electrode—electrolyte interface was then examined
using SEM.
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Figure S15. Phase structures of PgLF and PcLF.
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Figure S16. (a) Graphite and (b) Charcoal Microstructure



Figure S17. EDS of LGLZO/C¢composite powder



Figure S18. SEM images and EDS spectra of (a) PGLF and (b) PcLF.



Table S1. Porosity in Quasi-Solid Electrolyte article

Title Porosit Ref.
y

Garnet-Based Solid-State Li Batteries with High-Surface-Area  51% [S1]
Porous LLZO Membranes (ACS Applied Materials & Interfaces,
2024).
Oriented porous LLZO 3D structures obtained by freeze casting  60% [S2]
for battery applications (Journal of Materials Chemistry A,
2019)
Uniformly porous PVDF-co-HFP membranes prepared by mixed 86% [S3]
solvent phase separation for direct contact membrane
distillation (Journal of Membrane Science, 2024)
Self-adaptable gel polymer electrolytes enable high-performance  78% [S4]
and all-round safety lithium ion batteries (Energy Storage
Materials, 2022)
Poly(vinylidene fluoride)/SiO, composite membranes prepared  75% [S5]

by electrospinning and their excellent properties for nonwoven
separators for lithium-ion batteries (Journal of Power

Sources, 2014)




Table S2. Changes in the Quality with Different Carbon Content

Content of Variation in

perforating  Organization = Before calcination  After calcination Mass Before

agent and After
10 % Quality (g) 1.0942 0.9615 -11.13 %
20 % Quality (g) 1.2244 0.9545 -22.04 %
30 % Quality (g) 1.1303 0.7700 -31.87 %

40 % Quality (g) 1.0392 0.6306 -39.32 %




Table S3. Comparison of ionic conductivity, current density, and cycling stability of
this work with previously reported electrolytes.

Electrolyte Ionic conductivity  Current density Cycle Time Ref.
(x103 S cm™) (mA cm?) (h)

PEO/LLZO 1.36 0.2 400 [S6]
PEO/LLZO framework 0.14 0.2 400 [S7]
LE/LLZO framework 4.2 0.5 1400 [S8&]
PEO/LLZO nanowires 1.53 0.5 1050 [S9]
PVDF/LLZTO 0.12 0.1 1200 [S10]
PEO/LICGC 0.29 0.2 800 [S11]
PEO/Li,ZrOs 0.5 0.1 200 [S12]
LE/FEC/LLZTO 0.65 0.1 500 [S13]
PVDF/TiO, 0.33 0.2 3800 [S14]
LE/MOFs 0.24 0.5 1000 [S15]
LE/MOFs 7.74 0.2 1000 [S16]
LE/LATP framework 7.9 1 120 [S17]
PEO/LLZTO 0.22 0.1 2500 [S18]
PEO/LLZO 0.18 0.5 200 [S19]
PEO/LLZO 0.64 0.2 600 [S20]
PEO/Bi4Ti301; 0.62 0.1 3000 [S21]
LE/ODA nanofiber 29 1 2000 [S22]
LE/PIM-CONH, 1.08 0.1 1500 [S23]
LE/LLZO framework 2.06 0.5 800 [S24]

LE/LLZO-TiO, 1.6 0.3 500 [S25]



LE/LGLZO framework 2.54 0.5 1150 This work

LE/LGLZO framework 3.02 0.5 1600 This work
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