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Figure S1. SEM images of (a) pristine ZnO, (b) ZnO-300, (¢) ZnO-400, and (d) ZnO-

500 with the high-magnification image insets.
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Figure S2. XPS O 1s spectra of (a) pristine ZnO, (b) ZnO-300, (c) ZnO-400, and (d)
Zn0-500.
Supporting Information of S1

A gradual narrowing of the band gap is observed with increasing annealing
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temperature. This redshift can be attributed to the increasing concentration of oxygen
vacancies, which introduce localized defect states near the conduction band edge. These
defect states effectively reduce the band gap, enhancing visible-light absorption and
improving photocatalytic activity under solar irradiation. The band gap in ZnO-500 is
3.18 eV, which correlates with its highest oxygen vacancy concentration, as also

supported by EPR and XPS results.
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Figure S3. presents the UV—vis diffuse reflectance spectroscopy (UV-DRS) results and
corresponding Tauc plots of (a) pristine ZnO, (b) ZnO-300, (c) ZnO-400, and (d) ZnO-
500, used to estimate the optical band gap energies of each sample.
Supporting Information of S2

Figure S4 shows the X-ray photoelectron spectroscopy valence band maximum
(XPS-VBM) spectra of ZnO samples annealed at different temperatures. The VBM
values were estimated by extrapolating the linear portion of the leading edge of each
spectrum to the baseline. The valence band maximum values, determined from the

extrapolation of the leading edge of the XPS spectra, are 2.67 eV for pristine ZnO and
3



Zn0-300, 2.61 eV for ZnO-400, and 2.52 eV for ZnO-500. These results indicate a
progressive downward shift of the VBM with increasing annealing temperature,
especially evident in ZnO-400 and ZnO-500. This shift can be attributed to the
formation of oxygen vacancies, which modify the electronic structure by introducing
mid-gap states and lowering the effective VBM position. The reduced VBM suggests
enhanced band bending and stronger internal electric fields, which are favorable for
improved charge separation and surface redox activity during the photocatalytic and

piezocatalytic nitrogen reduction reaction (NRR).
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Figure S4. XPS-VBM results of ZnO under different annealing temperatures indicating

the valence band maximum of each sample.
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Figure S5. Calibration curve of the indophenol blue method (a) UV-vis spectra and (b)

the calibration curve of absorbance and ammonia concentration.
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Figure S6. Calibration curve of the Watt and Chrisp method (a) UV-vis spectra and (b)

the calibration curve of absorbance and N,H, concentration.
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Figure S7. (a) UV-vis spectra of ZnO-300 under different catalytic conditions. U:
ultrasonication, L: light irradiation, and N,: N, pumping. (b) UV-vis spectra for Watt

and Chrisp method of the ZnO NFs under different annealing temperatures.
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Figure S8. Calibration curve of the NMR quantification method (a) NMR spectra and

(b) the calibration curve of NMR integrated area and ammonia concentration.
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Figure S9. NMR spectra of "NH," and '*NH," detection of ZnO-300 through (a)

photocatalytic process and (b) piezocatalytic process.

Table S1. Comparison table of NH; production rates using different catalytic sources

and catalysts.

Catalytic source  Catalyst NH; production rate ~ Reference
Piezo/Photo Zn0O-Oy 1765.3 ug gea ' h! This work
Photo Fe-TiO, 1091.4 pg geo! h! [1]
Photo Fe-Bi;Mo0Og 1810.5 ug gea ' h! [2]
Photo g-C3Ny-Cy 1428 pg gt hl [3]
Piezo Ag/ZnO 66.64 ng geo h! [4]
Piezo Ag/BisO51 1111.8 ug gea ' h! [5]
Piezo/Photo BaTiO;-Oy 1813.9 pug gea ' h! [6]

Supporting Information of S3
Calculation details

Initially, the unit cell of ZnO was relaxed using a 10 x 10 x 6 gamma-centered k-
point mesh. Subsequently, to explore the surface properties of the ZnO (100) surfaces,

a 2 x 2 supercell with a ZnO (100) surface was constructed. Then the oxygen vacancy



defect was introduced on the surface. The final model can be divided into pristine ZnO
and ZnO-Oy for further computation, as shown in Figure S10. To maintain a similar k-
point density in the supercell as in the unit cell, the k-point mesh was adjusted toa 5 x
3 x 1 gamma-centered mesh. The surface model comprised six layers, with the lower
three layers constrained to their bulk configuration throughout all calculations.
Additionally, a vacuum layer with a width of 20 A was included to prevent interactions
between periodic images. The adsorption energy E,4s of N, on the surface of ZnO was

calculated through the following equation:

Eous = Evorat— E

a

total ~ “surface ~ ENZ

E

E . .
where “totat, N2, and Esurface are the total energies of the adsorbed system, isolated

nitrogen molecules, and pristine surface, respectively.

In order to compute partial atomic charges for all systems, we performed charge
analysis calculations to determine the Bader charge and charge density difference
(CDD) for ZnO. The CDD can be obtained by following the equation:

CDD = Charge density ., system — Charge density g, cqc. - IsolatedN2

Density of state analysis has also been conducted to investigate the energy band
structure of ZnO and ZnO-Ov and the defect state formation. The model of ZnO-Oy
with different percent biaxial strain has also been made in order to simulate the applied
stress on the piezoelectric ZnO surface.

The reaction free energy was calculated by following the equation:

Etree = Etoral = Esurface = Ty = Mily
where Eiy. and Egy.ce are the total energies of the adsorbed system and bare surface,
respectively. And py and py are the chemical potentials of the nitrogen atom and

hydrogen atom, respectively/7].



Figure S10. DFT calculation model of pristine ZnO (100) slab (left) and ZnO (100) slab

with oxygen vacancy (right).

Figure S11. DFT model of pristine ZnO (left) and ZnO-Oy (right) after the adsorption

of nitrogen by end-on mode at the hollow sites.
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Figure S12. NRR free energy diagram of ZnO and ZnO-Oy through (a) associative
distal pathway and (b) mix pathway. The calculation results indicate that the energy
barrier of the distal pathway is larger, thus it is not energy-favorable in our system.
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Hydrogenation sequences of associative altering pathway, indicating the transition
from *N, to *NHs.
*N, — =NNH

HY +e”
*NNH —-> «=NHNH



Table S2. Composition of the indophenol blue indicator.

Solution Composition

A 4.97 g salicylic acid + 4.39 g sodium citrate in 100 ml,

0.625 M KOH solution

B CsFeNgNa,O solution (10 mg/ml)
C 4% NaClO solution
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