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Material characterization

Structural and morphological characterizations were performed using a JEOL 6700F scanning electron
microscope (SEM). The crystal structure of Mg foils was analyzed by X-ray diffraction (XRD, Bruker)
with Cu Ka radiation (A = 1.5418 A). Elemental composition was examined using X-ray photoelectron
spectroscopy (XPS, Thermo Fisher Scientific) with Al Ka radiation (1486.6 eV), and time-of-flight

secondary ion mass spectrometry (TOF-SIMS, IONTOF GmbH, Germany).
Electrochemical measurements

All the electrochemical measurements were carried out in CR2032-type coin cells assembled in an
argon-filled glovebox. Symmetric cells were fabricated using either bare Mg or Br-Mg anodes (212.7
mm) as both counter and working electrodes, while asymmetric cells employed bare Mg or Br-Mg as
the counter electrode and Al/C foil (211.28 mm) as the working electrode. A glass fiber separator
(Whatman™ GF/D), pre-dried in a vacuum oven at 150 °C for 4 h, was used in all cells. The electrolyte
was prepared by dissolving 0.3 M magnesium tetrakis(hexafluoroisopropyloxy)borate (Mg[B(hfip)a]a,
99.99%, MTI) in 1,2-dimethoxyethane (DME, 99.5%, anhydrous, Sigma-Aldrich) pre-dried with
molecular sieves (3 A beads, 4-8 mesh, Sigma-Aldrich). Following preparation, the electrolyte was
further dried over molecular sieves to ensure complete removal of residual moisture, and 80 pL was
used per cell. The electrochemical performance of symmetric and asymmetric cells was evaluated
using a Neware battery tester. Tafel and electrochemical impedance spectroscopy (EIS)
measurements were performed in symmetric coin cells with a Gamry Reference 600+ Potentiostat,
applying a 5 mV perturbation over a frequency range of 1 MHz to 0.01 Hz. For full-cell testing, MogSs
prepared following previously reported methods! was employed as the cathode material. The MogSg
cathode was fabricated by mixing MogSg powder, Super P carbon, and polyvinylidene difluoride (PVDF)
binder in a weight ratio of 8:1:1 to form a slurry, which was subsequently coated onto nickel foil. The
electrodes were dried under vacuum at 60 °C overnight, yielding a mass loading of ~1.55 mg cm™2, and

testedat0.1C(1C=129 mAg™).
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Figure S1. Cross sectional SEM image of Br-Mg anode.
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Figure S2. The equivalent circuit models employed to fit the Nyquist plots.
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Figure S3. (a) Nyquist plots measured at different temperatures with bare Mg anode symmetric cell. (b) Nyquist plots
measured at different cycles with bare Mg anode symmetric cell.
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Figure S4. (a-c) Different time stamps of voltage profiles of symmetric cells measured at 0.5 mA cm2 and 0.5 mAh cm™2. (d)
Galvanostatic cycling profiles of symmetric cells at 5 mA cm2 and 5 mAh cm-2.
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Figure S5. Galvanostatic cycling profiles of symmetric cells at (a) 1 mA cm2 and 1 mAh cm2, (b) 2 mA cm2 and 2 mAh cm??,
(c) 3 mA cm2 and 3 mAh cm?2, (d) 3 mA cm and 3 mAh cm2 with three different cells with Br-Mg anode.
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Figure S6. Galvanostatic profile of the asymmetric cells (a) Aurbach test of three different cells with bare Mg anode, (b)
Aurbach test of three different cells with Br-Mg anode, (c) cells with different anodes at 3 mA cm2 and 3 mAh cm?, (d)
with three different cells with Br-Mg anode 3 mA cm2 and 3 mAh cm™.
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Figure S7. CE vs cycle number curves of asymmetric cells measured at different current densities.
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Figure S8. Voltage profile of the bare Mg symmetric cell measured at different current densities.
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Figure S9. Galvanostatic cycling profile of the symmetric cells measured at different current densities.
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Figure S10. Voltage profile of the bare Mg//MoSg full cell measured at 0.1 C.
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Figure S11. Depth profiling XPS Mg 2p spectra of anodes after cycling.

Table S1. XPS fitting details of Mg 2p peaks of bare Mg and Br-Mg anodes.

Electrode Etching time Concentration of fitted components (%)
(min) mg° Mg(OH), MgOo MgBr, Mg(CO); Dangling
bonds
Bare Mg 0 30.49 9.12 27.65 - 4.36 28.38
0.5 29.28 11.56 30.18 - 3.13 25.84
5 35.52 7.68 24.49 - 7.12 25.19
30 45.95 7.74 21.98 - 6.36 17.96
Br-Mg 0 90.57 - - 9.43 - -
0.5 69.71 - - 30.29 - -
5 73.87 - - 26.13 - -
30 76.40 - - 23.60 - -

Table S2. XPS fitting details of Br 3d peaks of Br-Mg anodes.

Electrode Etching time (min) Concentration of fitted components (%)
Organic-Br MgBr,
Br-Mg 0 84.67 15.33
0.5 - 100
5 - 100
30 - 100
Table S3. Calculated parameters from EIS fitting curves before cycling.
Electrode R (Q) Rser (Q) R (Q)
Bare Mg 46.55 - 840761
Br-Mg 5.56 25.86 334467
Table S4. Calculated parameters from EIS fitting curves measured at different temperatures.
Electrode Temperature °C R; (Q) Rsg (Q) R (Q)
Bare Mg 30 3.05 - 290412
40 2.56 - 148633




50 3.45 - 113052
60 3.40 - 74298
Br-Mg 30 3.97 18.01 182947
40 12.43 26.05 125081
50 11.75 23.31 88043
60 4.44 28.25 55679
Table S5. Calculated parameters from EIS fitting curves measured at different cycles.
Electrode Cycle number R; (Q) Rsg (Q) R (Q)
Bare Mg 10 6.55 3.29 287
50 12.27 6.7 27614
100 136.8 3.67 61070
200 11.69 9.14 37426
Br-Mg 10 3.19 2.16 29.48
50 33.46 2.82 20085
100 3.01 3.71 88082
200 4.52 2.96 57114

Table S6. Performance comparison of our symmetric cells with previous reports based on Mg electrode modification.

Electrode Electrolyte Current Areal capacity Cycling Overpotential Referenc
density (mAh/cm?) life (h) (mV) e
(mA/cm?)
c-PAN-Mg Mg(TFSI),/PC 0.01 0.005 1000 500 2
MgF,@Mg APC 0.25 0.25 200 25 3
Bi-Mg Mg(TFSI),/DME 1 0.5 4000 600 4
Mg-Si Mg(TFSI),/DME 0.1 1 1400 300 5
MOF/Mg Mg(TFSI),/DME 0.05 - 100 750 6
Mg-Bi@PTHF Mg(TFSI),/DME 0.1 0.05 2000 200 7
Br-Mg Mg(TFSI),/G2 1 0.5 150 500 8
Sb- Mg(OTf), + MgCl, 1 1 1200 180 9
Mg/MgCl,@Mg
GPL@Mg Mg(TFSI),/G2 0.5 0.5 200 340 10
Lil-Mg Mg(TFSI),/DME 0.5 0.5 500 500 11
Sb-Mg Mg(TFSI),/DME 0.2 0.2 800 250 12
Mg-Sn-Bi@Mg APC 0.2 0.2 1000 53 13
In/MgCl,@Mg APC 1 0.5 1800 90 14
FRAB@Mg Mg(TFSI),/DME 1 1 2200 600 15
PDG-Mg Mg(OTf), + 1 1 900 200 16
MgCl,/DME
MBI@Mg Mg(TFSI),/DME 1 0.5 1750 230 i
In/Mgl,@Mg Mg[B(hfip)al./DME 0.5 0.25 725 80 18
Al/OCI@Mg Mg[B(hfip)al./DME 1 0.5 1200 180 19
Br-Mg Mg[B(hfip)s],/DME 0.5 0.5 1610 68 This work
1 1 1330 75
5 5 263 170

Table S7. Performance comparison of our symmetric cells with previous reports based on boron-centered electrolytes.

Electrode Electrolyte Current Areal capacity | Cycling life (h) | Overpotential Referenc
density (mAh/cm?) (mvV) e
(mA/cm?)
Mg MgFPB/G2 0.1 - 500 60 20
Mg Mg[B(hfip)al,+ PS 0.1 0.05 700 102 21
+1,/DME
Mg Mg[B(hfip)al, + 0.5 0.25 500 93 2
Mgl,/DME
Mg Mg[B(hfip),],/DME-THF 0.1 0.1 2000 40 23




Mg Mg[B(hfip)a], + Bi(OTf)3 1 0.5 500 140 2
/DME
Mg Mg[B(hfip)4],/G2 1 0.5 47 80 25
Mg Mg[B(hfip).],/DME 0.1 0.05 1200 90 26
Mg BMCM/DME 0.1 0.05 500 68 27
Mg TMPL-nB(Otfe)s/THF 0.5 0.25 1000 128 28
In/Mgl,@ Mg[B(hfip)s],/DME 0.5 0.25 725 80 18
Mg
Al/OCI@ Mg[B(hfip).],/DME 1 0.5 1200 180 19
Mg
Br-Mg Mg[B(hfip),],/DME 0.5 0.5 1610 68 This work
1 1 1330 75
5 5 263 170

Table S8. Comparative table of asymmetric cell performance with previously reported boron-centered electrolytes.

Electrolyte Current density Areal capacity Cycles Coulombic Referenc
(mA/cm?) (mAh/cm?) (number) efficiency (%) e
TMPL-nB(Otfe)s/THF 0.5 0.25 100 98.70 28
BMCM/DME 0.5 0.5 500 97 27
MCBB/THF 0.5 0.5 140 93 29
MBA-B(Otfe)s/THF 0.5 - 200 98 30
Mg[B(hfip)4],/DME 0.5 - 100 98 31
Mg[B(hfip)],/G3 0.5 0.25 100 98 32
Mg[B(hfip)a),/DME-THF 0.5 0.25 500 99.40 23
Mg[B(hfip),],/DME 5 1 1000 99.04 33
Mg[B(hfip)s].,/DME 0.5 0.25 1000 96.90 18
Mg[B(hfip)s]o/DME 1 0.5 200 97.51 19
Mg[B(hfip),],/DME 0.5 0.5 1630 99.50 This work
Table S9. XPS fitting details of Mg 2p of bare Mg and Br-Mg anodes after 20 cycles in symmetric cells.
Electrode Etching time Concentration of fitted components (%)
(min) Mmg° Mg(OH), MgF,/MgO MgBr, Mg(CO); Dangling
bonds
Bare Mg 0 17.53 9.49 8.15 - 2.34 62.50
0.5 18.22 5.16 13.64 - 3.02 59.96
5 22.62 6.46 17.44 - 4.76 48.72
30 34.39 9.74 27.12 - 7.59 21.16
Br-Mg 0 2.07 - - 97.93 - -
0.5 7.48 - - 92.52 - -
5 74.03 - - 25.97 - -
30 78.83 - - 16.99 4.18 -

Table S10. XPS fitting details of Br 3d of Br-Mg anodes after 20 cycles in symmetric cell.

Electrode Etching time (min) Concentration of fitted components (%)
Organic-Br MgBr,
Br-Mg 0 67.17 32.83
0.5 - 100
5 - 100
30 - 100




References

1.

2.

10.

1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

D.-T. Nguyen, A. Y. S. Eng, M.-F. Ng, V. Kumar, Z. Sofer, A. D. Handoko, G. S.
Subramanian and Z. W. Seh, Cell Reports Physical Science, 2020, 1, 100265.

S. B. Son, T. Gao, S. P. Harvey, K. X. Steirer, A. Stokes, A. Norman, C. Wang, A.
Cresce, K. Xu and C. Ban, Nat Chem, 2018, 10, 532-539.

B. Li, R. Masse, C. Liu, Y. Hu, W. Li, G. Zhang and G. Cao, Energy Storage Materials,
2019, 22, 96-104.

Y. Zhao, A. Du, S. Dong, F. Jiang, Z. Guo, X. Ge, X. Qu, X. Zhou and G. Cui, ACS
Energy Letters, 2021, 6, 2594-2601.

Y. Li, X. Zhou, J. Hu, Y. Zheng, M. Huang, K. Guo and C. Li, Energy Storage
Materials, 2022, 46, 1-9.

Y. Zhang, J. Li, W. Zhao, H. Dou, X. Zhao, Y. Liu, B. Zhang and X. Yang, Adv Mater,
2022, 34, 2108114.

Y. Zhuang, D. Wu, F. Wang, Y. Xu, J. Zeng and J. Zhao, ACS Appl Mater Interfaces,
2022, 14, 47605-47615.

A.R.Jeon, S. Jeon, G. Lim, J. Jang, W. J. No, S. H. Oh, J. Hong, S. H. Yu and M. Lee,
ACS Nano, 2023, 17, 8980-8991.

Y. Li, G. Yang, C. Zhang, W. Y. Lieu, C. Y. J. Lim, S. Sun, J. Wang, S. Jiang, Z. Xing,
Z. Sofer, M. F. Ng, W. Liu and Z. W. Seh, Advanced Functional Materials, 2023, 33,
2210639.

S. Shin, J. H. Kwak, S. H. Oh, H. S. Kim, S. H. Yu and H. D. Lim, ACS Appl Mater
Interfaces, 2023, 15, 28684-28691.

C. Wang, H. Huang, X. Wu, M. Yousaf, M. Yan and Y. Jiang, ACS App! Mater
Interfaces, 2023, 15, 51126-51134.

B. Yang, L. Xia, R. Li, G. Huang, S. Tan, Z. Wang, B. Qu, J. Wang and F. Pan, Journal
of Materials Science & Technology, 2023, 157, 154-162.

X. Chai, H. Xie, T.-T. Zhang, Y. Xin, F. Zhang, B. He, H. Xie, L. Yu and H. Tian,
Energy Storage Materials, 2024, 70, 103460.

Y. Chen, X. Shen, J. Wang, Y. Zhang, Y. Hao, L. Tong, G. Huang, Q. Li, X. Zhou, B.
Qu and F. Pan, ACS Energy Letters, 2024, 9, 5616-5626.

G. Li, K. Chen, M. Lei, T. Wang, M. Hu and C. Li, Advanced Energy Materials, 2024,
14, 2401507.

Y. Li, X. Feng, G. Yang, W. Y. Lieu, L. Fu, C. Zhang, Z. Xing, M. F. Ng, Q. Zhang, W.
Liu, J. Lu and Z. W. Seh, Nat Commun, 2024, 15, 9364.

D. Zhang, Y. Sun, X. Liu, Y. Zhang, R. Wang, Y. Zhao, M. Pan, Y. Wang, S. Chen, M.
Zhou, Y. Chen, J. Yang, J. Wang and Y. NuLi, ACS Energy Letters, 2024, 9, 2685-
2695.

S. Cao, X. Qi and X. Zhao, Energy & Fuels, 2025, 39, 15498-15504.

Y. Chen, Y. Zhang, Z. Tang, Z. Zhang, L. Tong, X. Gan, X. Shen, G. Huang, Q. Li, B.
Qu, F. Pan and J. Wang, Chemical Engineering Journal, 2025, 521, 166781.

J. Luo, Y. Bi, L. Zhang, X. Zhang and T. L. Liu, Angew Chem Int Ed Engl, 2019, 58,
6967-6971.

V. B. Parambath, Z. Zhao-Karger, T. Diemant, M. Jackle, Z. Li, T. Scherer, A. Gross, R.
J. Behm and M. Fichtner, Journal of Materials Chemistry 4, 2020, 8, 22998-23010.
X. Song, J. Sun, W. Ren, L. Wang, B. Yang, H. Ning, P. Zhang, Z. Caixiang, Z. Tie, X.
Zhang, Y. NuLi and Z. Jin, Angew Chem Int Ed Engl, 2025, 64, €¢202417450.

C. Chen, J. Chen, S. Tan, Z. Gao, X. Huang, Z. He, J. Huang, R. Deng, F. Xiong, G.
Huang, J. Wang, L. Li and F. Pan, Advanced Functional Materials, 2025, n/a, 2505843.
Z. Meng, Z. Li, L. Wang, T. Diemant, D. Bosubabu, Y. Tang, R. Berthelot, Z. Zhao-
Karger and M. Fichtner, ACS Appl Mater Interfaces, 2021, 13, 37044-37051.



25.

26.

27.

28.

29.

30.

31.

32.
33.

J. Drews, P. Jankowski, J. Hacker, Z. Li, T. Danner, J. M. Garcia Lastra, T. Vegge, N.
Wagner, K. A. Friedrich, Z. Zhao-Karger, M. Fichtner and A. Latz, ChemSusChem,
2021, 14, 4820-4835.

Z. Zhao-Karger, R. Liu, W. Dai, Z. Li, T. Diemant, B. Vinayan, C. Bonatto Minella, X.
Yu, A. Manthiram and R. J. r. Behm, ACS energy letters, 2018, 3, 2005-2013.

X. Huang, J. Wen, J. Lei, G. Huang, F. Pan and L. Li, ACS Applied Materials &
Interfaces, 2022, 14, 8906-8915.

Y. Wang, Y. Sun, D. Zhang, M. Pan, Y. Chen, S. Chen, S. Zhang, Y. Zhao, J. Wang and
Y. NuLi, Energy Storage Materials, 2024, 65, 103152.

M. Cheng, W. Ren, D. Zhang, S. Zhang, Y. Yang, X. Lv, J. Yang, J. Wang and Y. NulLi,
Energy Storage Materials, 2022, 51, 764-776.

W. Ren, D. Wu, Y. NuLi, D. Zhang, Y. Yang, Y. Wang, J. Yang and J. Wang, ACS
Energy Letters, 2021, 6, 3212-3220.

Z. Zhao-Karger, M. E. G. Bardaji, O. Fuhr and M. Fichtner, Journal of Materials
Chemistry A, 2017, 5, 10815-10820.

T. Mandai, ACS Appl Mater Interfaces, 2020, 12, 39135-39144.

S. Li, J. Zhang, S. Zhang, Q. Liu, H. Cheng, L. Fan, W. Zhang, X. Wang, Q. Wuand Y.
Lu, Nature Energy, 2024, 9, 285-297.



