Supporting Information

Cationic defects engineered $CuMn_2O_4$ photothermal membrane to leverage interfacial solar steam generation

Harshada S. Jadhav,^{a,} Ekta Choudhary,^b Manopriya Samtham,^a Ajay Patil,^a Suman Yadav,^a Sameena R. Mulani,^a Rajashri Urkude,^c Ravindra Jangir,^{d,e} Parvez A. Shaikh,^f,** and Rupesh S. Devan^{a,g,*}

- a. Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India. rupesh@iiti.ac.in
- b. Department of Physics, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India.
- ^{c.} Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai 400085, India.
- d. Accelerator Physics and Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, India.
- e. Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.
- f. Department of Physics, AKI's Poona College of Arts, Science and Commerce, affiliated to Savitribai Phule Pune University, Pune 411001, India. parvezshaikh0@gmail.com
- g. Centre for Electric Vehicle & Intelligent Transport System, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, 453552, India.

A] Complex Impedance Spectroscopy analysis

Complex Impedance Spectroscopy (CIS) is a very useful tool for studying the electrical properties of materials that exhibit a complex interplay of conductive and insulating behavior, even with very small amount of compositional change. CIS enables the clear separation of bulk (intra-grain) through impedance (Z) formalisms.

The complex impedance $Z^*(\omega)$ can be defined as:

$$= Z'(\omega) + j Z''(\omega) \tag{1}$$

where Z' and Z" ascribed to the real and imaginary parts of impedance, respectively, are derived as follows:

$$Z' = \frac{R_G}{1 + (\omega R_G C_G)^2} + \frac{R_{GB}}{1 + (\omega R_{GB} C_{GB})^2}$$
(2)

and

$$-Z'' = R_G \left(\frac{\omega R_G C_G}{1 + (\omega R_G C_G)^2} \right) + R_G \left(\frac{\omega R_{GB} C_{GB}}{1 + (\omega R_{GB} C_{GB})^2} \right)$$
(3)

The shift in frequency peak positions to the higher side with increasing temperature represents the temperature-dependent electrical relaxation phenomena present in the material (Fig. S1). Generally, the activation energy of relaxation phenomena is determined from the Arrhenius Eq. (4),

$$fz_{max}^{"} = B\exp\left(-E_a/K_BT\right) \tag{4}$$

Where, Ea is the activation energy, B is the pre-exponential factor, KB is the Boltzmann constant, and T is the temperature. $fz_{max}^{"}$ is the frequency at which the maxima occur in the Z". $fz_{max}^{"}$ and T are determined experimentally. E_a is determined by fitting the Arrhenius plot of ln($fz_{max}^{"}$) versus $1/K_BT$, as shown in Fig. S1.

Activation energies (E_a) determined from the linear fitting of the Arrhenius plot are 0.129 eV for CMO_{NP} and 0.144 eV for CMO_{NF}. This activation energy is attributed to the charge transfer between Mn⁴⁺/Mn³⁺ sites.¹ Change in the E_a value for CMO_{NF} indicates modifications in the defect states, which directly influence charge-transport mechanisms. Since activation energy represents the barrier for carrier movement in the defect-mediated conduction process in metal oxides, this increment suggests altered defect dynamics in CMO_{NF}.

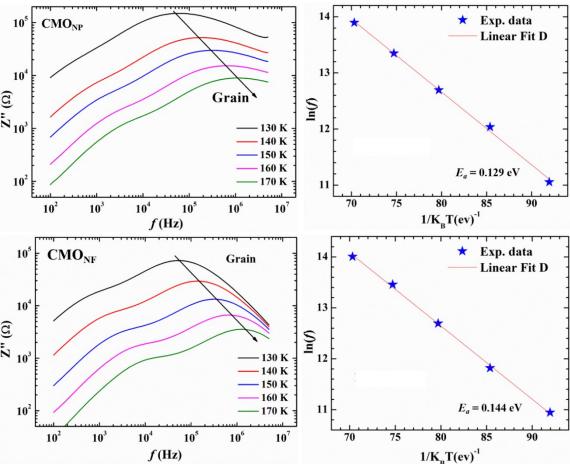


Fig. S1. Frequency-dependent plots of the imaginary part of impedance (Z'') measured at various temperatures and the linearly fitted Arrhenius plots for CMO_{NP} (upper panel) and CMO_{NF} lower panel.

References

[1] A. Leonarska, M. G. Kądziołka, A.Z. Szeremeta, J. Mater. Sci., 2017, 52, 2222–2231.