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Figure S1. (a-d) Scanning electron microscopy (SEM) images, (¢) Electron Images and (f)
corresponding elements mapping of the Ni; o hydroxide.



Figure S2. Scanning electron microscopy (SEM) images of (f) Ce, o hydroxide,



Figure S3. Scanning electron microscopy (SEM) images of (b) Nig g5 Cey ;5 LDH, (f)The
corresponding EDS elemental mapping.



Figure S4. Scanning electron microscopy (SEM) images of (c) Nij 75 Ceg,5 LDH,



Figure S5. Scanning electron microscopy (SEM) images of (d) Nig 5o Cegso LDH,
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Figure S6. Scanning electron microscopy (SEM) images of () Nig 5 Cey75s LDH,
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Figure S7. (a) BET adsorption isotherms, (b) Bar graph showing the measured surface areas of
the different Ni,,Ce, LDH Ratios.

Samples BET Total pore Average Pore
Surface area volume diameter
(m?/g) (cm’g) (nm)
Ni10.85Ce0.15 LDH 49 .85 0.35 2.8884
Ni0.75Ce0.25 LDH 65.37 0.50 3.0778
Ni10.50Ce0.50 LDH 44.60 0.38 3.0399
Ni10.25Ce0.85 LDH 4213 0.31 2.9763

Table-S1. BET surface areas and pore characteristics of the different Ni; Ce, LDH Ratios.



Figure S8. Transmission electron microscopy (TEM) images of Ni(OH),. (a) shows transmission
electron microscopy (TEM) images of the interconnected Ni(OH), nanosheets. (b) High-resolution
TEM images of Ni(OH),. The appearance of bright spots without diffuse rings in the selective area
electron diffraction (SAED) pattern in (¢) confirms the formation of crystalline Ni(OH),, which is
consistent with the X-ray diffraction (XRD) and TEM results. The high-angle annular dark field-
scanning TEM (HAADF-STEM) and energy-dispersive X-ray (EDX) mapping images of a single

nanosheet in (d—g) show the uniform distribution of Ni and O.



Table-S2. XRF analysis Ni; ,Ce, LDH (where x = 0.15, 0.25, 0.50 and 0.75).
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Figure S9. XRD of Ni; ,Ce, LDH catalyst electrodes different Ni and Ce ratios, with Pure Ni(OH),
and CeO,
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Figure S10. d-spacing values vs Ce doping (%) of Ni;Ce,-LDH ratios.
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Figure S11. XPS O 1 s spectra of Ni; ¢ and Nig 75Ce,5-LDH.
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Figure S12. XPS C 1 s spectra of Nil.0 and Nig 75Ce,s-LDH.



Table-S3. Electrochemical parameters obtained from LSV curves of the Ni; ,Ce, LDH
(where x =0.15, 0.25, 0.50 and 0.75), Ni; ¢/SS, Ce; ¢/SS and S.S.

1 Nij 269 336 99.19 1.5994 39.98
2 | NiggsCep1sLDH 260 329 75.83 1.8430 46.08
3 | Nig75CepsLDH 220 278 61.11 3.4143 85.36
4 | Nigs0Ceps0LDH 258 320 90.5 1.9591 48.98
5 | Nig,sCep7sLDH 262 323 77.21 2.4381 60.95
6 Ceio 306 358 81.16 | 2.0982 52.46
7 SS 354 - 177.95 - -




Table S4. Comparison of OER activity of the Ni0.75Ce0.25 LDH with some other reported LDH

catalysts.
No | Electrocatalysts | Overpotential Tafel References
(mV) @10,20 slope
(mV dec™)
mA cm
Nip75Ceg s LDH 220 61.11 This Work
@20 mA cm
1 NiyCe, 220@10 81.9 ACS Nano 2018, 12, 6245—-6251
2 NiCeOy 295@]10 66 ACS Catal. 2019, 9, 1605—1611
3 Ce0,/CoSe, 290@10 41 Small, 2015, 11, 182-188.
4 CeO,: 3D 240@10 57 Chem. Sci.,2017, 8,3211
CeO,/Ni(OH),
5 Ir-CeO,-C 279@10 48.3 Nano Research. 2022, 16, 7724
6 | Ru/d-NiFe LDH 224@10 60.48 Adv. Energy Mater. 2024, 14, 2400059
7 NiFe-LDH 239@10 53 ACS Appl. Mater. Interfaces 2016, 8,
33697-33703
8 | Nig75Voos-LDH 31010 50 Nat. Commun. 2016, 7, 11981.
9 NiFeCe-LDH 232@10 31.69 Chemical Engineering Journal 464
(2023) 142669
10 | CoFeRu-LDH 297@10 75 https://doi.org/10.1002/smll.202502821
11 | NiFeCe-LDH 267@10 31.7 Chem. Eng. J. 2023, 464, 142669.
12 | MXene/NiCo- 310@10 43 Sustainable Energy & Fuels 2023, 7,
LDH 4638.
13 NiCo-LDH 314@10 77 ACS Applied Energy Materials 2019, 2,
312.
14 | NiCoFe-LDH 340@10 93 Advanced Energy Materials 2015, 5,
1500245.
15 CoCr LDH 340@10 81 J. Mater. Chem. A, 2016, 4,11292-
11298
16 | MOF-74- 299@10 48.7 Chemical Engineering Journal 2021,
derived NiFe 423, 130204.
LDH
17 | CoFe-LDH/rGO 325@10 43 Advanced Materials Interfaces 2016, 3,
1500782.
18 | Cog4Feogs LDH 280@10 29 ACS Appl Energy Mater 2018,1,1200—
9.
19 | NiFeCoLDH 249@10 42 Small 2020,16, 2002426
20 | NiFeCe-LDH 227@10 33 ACS Appl Mater Interfaces
2018,10,6336-45.
21 | Au/NiFe LDH 237@]10 37 J Am Chem Soc 2018,140, 3876-9.



https://doi.org/10.1002/smll.202502821

22 CoV-LDHs 250@10 44 Energy Environ. Sci.2018, 11, 1736
23 NiFe-LDHs 270@10 48.6 Int. J. Hydrogen Energy 2022, 47,
23498.
24 NiCo;, Fe; - 231@10 59 Int. J. Hydrogen Energy 2022, 47,
LDHs 23644.
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Figure S13. Equivalent circuit diagram used to fit the Nyquist plot of the Ni; ,Ce, LDHs.



Table-S5. The physical parameters obtained by Equivalent circuit model for EIS data fitting the
NyqlliSt plOtS of N110/SS, Nio.g5ceo.15-LDH/S.S., Nio_75C€025-LDH/S.S., Ni0.50Ce0_50-LDH/S.S.,
Ni0725C60.75-LDH and Cel,O/S.S.

1305 0.0179 1639 0.0301 03278
2 Ni,Ce [LDH 1318 001942 09205 01004 03535
3 NiCe,LDH  LI131 000641 01516 0115 0436

4 Ni,Ce LDH 1153 002262 0308 002378 092

5 Nio.zsceo.75LDH 0.273 0.41 1.774 0.01876 1.13

6 Cel‘0 0.9065 0.006364 2.059 0.03669 0.3422

7 S.S. 1.112 0.002684 15.87 0.0504 0.9935

8 Ni i 75Ceo 25LDH 1.188 0.2968 0.2582 0.04578 1.278
After 265 h

stability
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Figure S14. The non-Faradic current density based electrochemically active surface area. (ECSA)
of Ni; o hydroxide, and Nig g5V 5 layered double hydroxide (LDH), Nig75V25s LDH, Nigs50Vo.50

LDH, Nig5V¢.75s LDH and Ce; o hydroxide.
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Figures S15. ECSA-normalized polarization curve graph.

T T T T T T T T T T T T T T T T T T
@ S.S. substrate] | 1 F 1V (vs RHE)
i 1t ; 11.5V
- n — ~ 1A
=3 13 13
2 2 12 &
2l 12T 18 <
b 12 L 1e @
k= \\.ﬁ__\__¥m £ £ [}
B B ] o
I 1 F 1 F 111V
- 1 T 1 10OCP
T T T T T T T T T T T T T T T T
200 400 600 800 900 1000 1100 1200 3000 3200 3400 3600 3800

Raman shift (cm™) Raman shift (cm™) Raman shift (cm™)



Figures S16. Potential-dependent in situ Raman spectra of Stainless-Steel Substrate (S.S.) in 1.0

M KOH.
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Figures S17. Potential-dependent in situ Raman spectra of Nig gsCe ;5-LDH in 1.0 M KOH
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Figures S18. Potential-dependent in situ Raman spectra of Nig 50Ceg 50-LDH in1.0 M KOH
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Figures S19. Potential-dependent in situ Raman spectra of Nig,5Ce(75-LDH in1.0 M KOH
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Figures S20. Stability performances of the Ni; -LDH, NijgsCe 15-LDH, Nig s50Ces0-LDH and
Ni0.25CCOA75—LDH at 10 mA CIl'l'2 in 1.0 M KOH.



Table-S6. XRF analysis of Nij75Ce(,5-LDH Pristine and after 265 h stability test.
Pristine-Nig 75Ceq .5 LDH Conc Unit 59.5ppm 6.3ppm  99.993%

After 265 h stability- Conc Unit 59.6ppm  4.5ppm  99.994%
Ni0.75Ce0_25 LDH






Figure S21. Scanning electron microscopy (SEM) images of After 265 h stability Nij 75 Ceg s
LDH
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