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Scheme S1. Schematic representation of the synthesis of Zn-doped and undoped MnWO4
Characterization and Analytical Techniques

Powder X-ray Diffraction (PXRD): The phase purity and crystalline structure of ZnxMnj.
«WO4.They were assessed using powder X-ray diffraction on a Bruker D8 Advance X-ray
diffractometer equipped with Cu Ka X-ray tubes (A = 1.5406 A). The diffraction pattern was
recorded in the 20 range of 10° to 80° and compared with the respective ICDD (International
Centre for Diffraction Data) data files for phase purity determination. Crystallite size was
calculated using Scherrer’s formula, Crystallite size (D) = KA/BcosO, where 0 is the angle
between incident and reflected X-rays, B is the full width at half maximum, A is the X-ray
wavelength, and K is the shape factor constant (K = 0.89).

Fourier Transform Infrared Spectroscopy (FTIR): FTIR analysis was conducted to identify
bonding types and functional groups in the material. A KBr pellet containing the sample was
prepared by mixing a small amount of the sample with KBr powder. The mixture was
homogenized and pressed under hydraulic pressure to create a palette. FTIR measurements
were performed using a Nicolet Protege 460 instrument.

Field Emission Scanning Electron Microscope (FESEM): FESEM was employed to study
the microstructure of the synthesized nanomaterial. Energy dispersive X-ray spectroscopy
(EDX) was also carried out for elemental analysis and mapping. These techniques were applied
to samples deposited on NF before and after electrocatalysis using a JSM-IT300HR, JEOL
instrument.

Transmission Electron Microscopy (TEM): Transmission electron microscopy, high-
resolution TEM (HRTEM) imaging, and selected area electron diffraction (SAED) patterns
were obtained using a JEOL HRTEM operating at an acceleration voltage of 200 kV. TEM
grids were prepared using a dilute suspension of Zno.1MnooWO4 in HPLC-grade ethanol on
carbon-coated Cu grids.

X-ray Photoelectron Spectroscopy (XPS): Surface analysis of the synthesized material was
conducted to determine the surface composition and oxidation states of chemical species using
X-ray photoelectron spectroscopy (XPS). Measurements were performed using an ESCA+
instrument from Omicron Nanotechnology, Oxford Instrument Germany, equipped with an
aluminum monochromator and aluminum source (Al Ka radiation hv = 1486.7 eV). The
instrument operated at 15 kV and 15 mA.
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Inductively coupled plasma mass spectrometry (ICP-OES): The chemical composition of
the materials was analyzed using inductively coupled plasma optical emission spectroscopy
(ICP-OES) with an Agilent 5110 instrument operated through ICP Expert software.

Spectrophotometric measurement (UV-VIS): All the optical spectra have been recorded
using a dual beam Agilent Cary 60 spectrophotometer equipped with a Xenon flash lamp (80
Hz) ranging from 190 nm to 1100 nm. All the spectra have been recorded at a medium scanning
rate.

Electrode fabrication. The powder materials were deposited on the 1 cm? surface area of the
Ni foam. Before deposition of the materials to the NF surface, NF was cut into 2x1 cm pieces
and then washed with dilute hydrochloric acid (0.1 M), Milli-Q water, and acetone through
sonication for 10 minutes and then dried at 60 ° C.! The Nafion solution was diluted with
ethanol to 1.0 wt% and 7-8 mg MnWO4 or ZnxMn(1.xyWO4 was added to 200 pl of the diluted
Nafion solution. The resulting mixture was ultrasonicated for 30 minutes. The catalyst ink was
then dropcasted through a micro-pipette on a 1 cm? NF surface.

Gas chromatography (GC): All gaseous products generated during the ammonia oxidation
reaction (AOR) were analyzed using an Agilent 8860 GC system equipped with a thermal
conductivity detector (TCD), with data acquisition and processing carried out via OpenLab
CDS software. Argon was used as the carrier gas at a constant flow rate of 7.5 mL min™'. The

oven temperature was programmed to increase from 40°C to 120°C at a ramp rate of 10°C min~
1

Electrode Kinetics measurement (RRDE experiment):

Calculation of the Number of electrons transferred (n) and observed rate constant (Kobs)
during AOR from the RRDE study: From Figure 5g, h, using the K-L relation, the number
of electrons transferred has been calculated from the slope of the graph between 1/ip and ™.

1515.3 (Slope) = 1/[0.62xnx96485.3xT1x(0.25)>x(1.2x 10-5)¥3x(1.12x102)"6x25x10°]
n = 1/[0.62x1515.3x96485x0.1963x(1.2x10°23x(1.12x102)/6x25x 107]
n=1.989.

Putting ‘n’ in equation 2 and using the intercept of the K-L plot, the observed rate constant of
the electron transfer kinetics (kobs) has been estimated.

ik = nFAKobsCo
163.89= 1.989><96485.3XHX(O.25)2X25X10'6><k0bs,
Kobs= 6.482x107 mol'ecm™s!.

*For more information about K-L analysis at different applied potentials, please refer to Table
S5.

Computational Methodology
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We employed the Vienna Ab Initio Simulation Package (VASP) for all spin-polarised density
functional theory calculations. The exchange-correlation interactions are treated within the
generalised gradient approximation (GGA) formulated by Perdew—Burke—and Ernzerhof
(PBE) functional. .>* The computational framework utilized projected augmented wave
pseudopotentials with scalar relativistic treatments and a 420 eV plane-wave energy cutoff > °
To accurately describe the strongly correlated d-electrons in transition metal oxides, the
DFT+U approach is implemented.* Structural optimizations are carried out for both pristine
and Zn-doped MnWOs systems until the interatomic Hellmann-Feynman forces converge
below 0.01 eV/A. The Brillouin zone sampling utilizes I'-centered Monkhorst-Pack k-point
meshes of 3x2x2 for structural optimization and 5x4x2 for self-consistent field (SCF)
calculations, respectively.” To model Zn substitution at 6.25%, 12.5%, and 18.75%
concentrations in ZnMn-x\WOs, a 2x2x2 supercell of the primitive MnWOQ4 structure is
constructed. The dopant configurations are systematically chosen to maximize spatial
separation between Zn atoms and minimize dopant-dopant interactions, as illustrated in Figure
la. The SUMO command-line tool determines the hole effective masses by fitting parabolic
functions to the valence band maximum (VBM) dispersion.

Calculations of Chemical Potential:

Chemical potentials for ‘Zn’ and ‘Mn’ are calculated from their respective bulk structures
obtained from the OQMD database.” The chemical potentials are referenced to well-defined
states according to:

W= W+ A

Where i represents the fixed reference state, and Ap; is the relative chemical potential for the
specific conditions. We use the standard reference state for each element (the stable phase
under standard conditions) and obtain reference energies directly from DFT total energies per
atom at 0 K, neglecting temperature and pressure effects.

Synthesis and characterization of Zn.Mn;.xWOs..

Table S1. ICP-MS study of the synthesized 5, 10, 15% Zn-doped MnWO4 materials.

55 Mn 65.4 Zn 184 W
[Ar] [Ar] [Ar]

e Sirralle Weine Conc. Conc. | Conc. Conc. Conc. Conc.
[ppm] | RSD |[ppm]| RSD |[ppm]| RSD
CalBIk BLANK 0 N/A 0 N/A 0 N/A
CalStd 1 ppm 1.03 3.06 0.97 3.06 0.97 3.06
CalStd 2 ppm 2.02 1.05 2.01 0.69 2.01 0.69
CalStd 5 ppm 495 1.00 5.02 0.35 5.02 0.35
CalStd 6 ppm 5.90 1.73 6.06 1.05 6.06 1.05
Sample? 5%7Zn-MnW Q4 0.96 0.58 0.06 0.81 0.97 1.68
Sample? |  10%Zn-MnWO4 0.69 0.19 0.09 1.15 0.72 2.53
Sample? |  15%Zn-MnWOq4 0.93 0.93 0.18 0.24 0.49 1.40

aThe solid samples were digested using aqua regia and liquid samples were diluted 100 times
before the experiment.
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Table S2. ICP-MS study of the synthesized 5, 10, 15% Zn-doped MnWO4 materials.

Sample-1 Mn Zn
(5% Zn doped MnWO4)
Experimental ratio (molar) 95 5
ICP-MS data (in ppm) 0.96 0.06
ICP-MS data (in M) 1.74736x107 9.17712x107
Molar ratio 95.01 4.99
Empirical formula Zn0.0sMno.9sWO4
Sample-2 Mn Zn
(10% Zn-doped MnWO4)
Experimental ratio (molar) 90 10
ICP-MS data (in ppm) 0.69 0.09
ICP-MS data (in M) 1.25592x107 1.37657x10°¢
Molar ratio 90.12 9.88
Empirical formula Zno.1Mno.oaWO4
Sample-3 Ni Zn
(15% Zn doped MnWOy4)
Experimental ratio (molar) 85 15
ICP-MS data (in ppm) 0.93 0.18
ICP-MS data (in M) 1.6927x107 2.75314x10°¢
Molar ratio 86.01 13.98
Empirical formula Zn0.14Mno.ss WO4
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Figure S1. PXRD obtained from the .cif file used for the representative figure for MnWOa,
which is well correlated to the obtained PXRD pattern of synthesized doped and undoped
MnWOys, along with the ICDD card number 00-013-0434.
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Figure S2. Crystallite size determination from PXRD. Fitted PXRD spectra of (a) MnWO4, (b)
7Z10.0sMno.9sWOs, (¢) Zno.1Mno.oWOs, (d) Zno.14Mno ssWO4, and (¢) ZnWOs.
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Figure §3. 3-D lattice view of Zn-doped MnWOsu. (a) Ball stick model structure of Zn-doped
MnWOs, (blue sphere: zinc atom, magenta sphere: manganese atom, grey sphere: tungsten
atom, and red spheres: oxygen atom). (b) Polyhedral model structure of Zn-doped MnWOu,
Color code: ZnOg¢ (Blue), MnOs (magenta), and WOs (grey) octahedra, edge, and corner-
sharing of ZnOg, MnOs, WOs octahedra. (c) Extended lattice view of Zn-doped MnWOs4,
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Figure S4. FTIR spectra of MnWO4 and Zn-doped MnWO4 nanomaterials within (a) 400-1000

cm™! and (b) 400-550 cm! region.!°
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Figure S5. FTIR spectra of MnWO4 and Zn-doped MnWO4 nanomaterials within (a) 400-1000
cm™! and (b) 400-550 cm’! region.!!
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Figure §6. XPS survey spectrum of the as-synthesized Zno.iMnooWOs nanoparticles
confirming the presence of Zn, Mn, W, and O.
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Figure S7. (a-c) Additional FE-SEM image of as-synthesized Zno.1MnooWO4 at different

magnifications.
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Figure S8. FESEM-EDX spectrum of as-synthesized Zno.1iMng.oWOas.
(c)

Figure §9. (a-c) Additional TEM image at different magnifications of Zng.1MnooWOs,
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Figure S10. Particle size distribution of Zno.1Mno9WO4 materials obtained from the TEM
image, considering 100 nanoparticles.

( C) Ring identification
Radius [1/nm] d-spacing [nm]

ﬂ theor. measured theor. measured
m 2,091 2.098 0.478 0.477
m 2.720 2.733 0.368 0.366
m 3.478 3.450 0.288 0.290
m 4.058 4.085 0.246 0.245
m 4.548 4.582 0.220 0.218
m 5.768 5.769 0.173 0.173
m 6.921 6.901 0.144 0.145
m 8.378 8.391 0.119 0.119
m 9.059 9.054 0.110 0.110
m 9.869 9.882 0.101 0.101

Figure S11. SAED analysis of Zno.1MnooWO4 and correlation to the plane corresponding to
each diffraction ring. (a) SAED and convoluted 1D intensity profile. (b) indexed plane for each
diffraction ring in SAED. (c) Theoretical and measured distance correlation of radius in
reciprocal space (1/nm) and d-spacing (nm).

Figure S12. (a) SAED pattern of the diffracted beam, (b) exposed facet of the (020) plane in
dark-field HR-TEM of as-synthesized Zno.1Mno.oWOas.
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Figure S13. (a) HR-TEM image of Zno.1Mno9WO4 material and corresponding elemental
mapping for (b) Zn, (c) Mn, (d) W, and (e) O s.
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Figure S14. TEM-EDX spectrum of Zno.1Mno 9oWO4 indicating the presence of Zn, Mn, W, and
0.
Table S3. Quantitative analysis of the TEM-EDX spectrum of Zno.1MngoWOa.

Element (keV) Mass% Atom%

OK 0.525 37.32 81.48
Mn K 5.894 12.03 7.65
Zn K 8.630 3.61 1.03
WM 1.774  47.05 8.94
Total 100.00 100.00
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Figure S15. (a) PXRD pattern of a-MnO> and the standard diffraction pattern for ICDD card
No. 00-044-0141.
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Figure S16. Electrochemical AOR study using Blank-NF, MnWO4/NF, Zno.0sMng.os WO4/NF,

Zno.1MnooWO4/NF, Zno.1sMnossWO4/NF, ZnWO4/NF using 0.5 M NH3 in 0.5 M NaOH.
Polarization curves were obtained from the CV study using 0.5 M NHj3 in 0.5 M NaOH.

Table S4. Literature survey on heterogeneous electrocatalytic AOR catalysts and their
performances.

Material Substrate NH3 Electrolyte Onset (V) Products Reference
(Conc.) (FE %)
Zno.1MngoWO4 NF 0.5M 0.5 M NaxSO4 0.62 [NOs] (70+5), This Work
[NO2](10£2)
Zng,0sMng.os WO, NF 0.5M 0.5 M NaSO4 0.68 [NOs] (60+5), This Work
[NO2J(20+4)
MnWO, NF 0.5M 0.5 M NaySO4 ~0.90 [NOs] (30+5), This Work
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Figure S17. A linear sweep voltammogram (LSV) recorded with Zno.1Mno.oWO4/NF electrode
at a scan rate of 2 mV s, varying ammonia concentrations in 0.5 M NaOH.
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Figure S18. Double-layer capacitance during electrochemical AOR study using Blank-NF,

MnWO4/NF, Zno,osMno,95WO4/N F, Zn0_1Mn0_9WO4/NF, Zno_15Mno,35WO4/NF, ZnWO4/NF in a
mixture of 0.5 M NH3 and 0.5 M NaOH.
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Figure S19. CV cycles at different scan rates with (a) Zno.0sMno.osWOs, (b) Zno.1MngoWOs,
(¢) Zno.1sMno.sgsWO4, (d) MnWOs, (e) ZnWOsq, (f) bare nickel foam (NF), and (f) a-MnO: in
0.5 M NHj3 containing 0.5 M NaOH solution. The potential range: 0.2 V to 0.3 V (vs. Hg/HgO)
and sweep rates: 10 to 150 mV/s.
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Figure $20. AOR in 0.5 M NHj3 containing 0.5 M NaOH using Zno.1Mno9oWO4/NF electrode
at different applied potentials and quantification of NOx product via optical spectroscopy. (a)
Current vs. time plot during bulk electrolysis stydy at five different potential, (b) corresponding
time vs. charge plots. UV-vis absorption spectra obtained after 1 h bulk electrolysis at various
potentials for (c¢) nitrate ([NO3]"), (d) nitrate ([NO2]"). (BCA: before CA-AOR and ACA: after
CA-AOR)
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Figure S21. CV study for the electrochemical AOR using Blank-NF, MnWO4/NF,
Z1n0.0sMno.os WO4/NF, Zno.1MnooWO4/NF, Zno.1sMnossWO4/NF, ZnWO4/NF, and a-MnO,/NF
in 0.5 M NH3 in 0.5 M NaSOjy electrolyte.
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Figure §22. LSV plot derived from the steady state electrochemical CA-AOR (provided in the
Figure S26) wusing blank-NF, MnWOu4/NF, ZnoosMnoosWO4/NF, Zno1MnooWO4/NF,
Zno.15Mng 8sWO4/NF, ZnWO4/NF, and 0-MnO>/NF in 0.5 M NH3 in 0.5 M NaSOjs electrolyte.
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Figure §23. Current versus time plots obtained from the chronoamperometry studies in
electrolyte using (a) Zno.osMnoosWO4/NF, (b) Zno.1MnooWO4/NF, (c) MnWO4/NF, (d)
Zno.15sMno gsWO4/NF, (e) ZnWO4/NF, (f) blank-NF AOR, and (g) a-MnO2/NF. (Inset: the
values of applied potential for the CA study).
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Figure $24. (a) Cyclic voltammogram (CV) recorded varying scan rate from 5 to 70 mV s in
0.5 M NaxSO4 containing 0.5 M NH3 using Zno.1MnooWO4/NF electrode, (b) corresponding
redox peak potentials versus the logarithmic scan rates plot to determine rate of AOR by using
Laviron equation.?
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Figure S§25. CV cycles recorded at different scan rates using (a) Zno.osMno.osWO4/NF, (b)
Zno.1Mno.oWO4/NF, (¢) Zno.14Mng s WO4/NF, (d) MnWO4/NF, (¢) ZnWO4/NF, (f) bare nickel
foam (NF), and (g) a-MnO2/NF in 0.5 M NH3; containing 0.5 M Na>SO4 solution.

0.4

@ [NOy"
@ [NO,

0

2000 4000 6000 8000 10000
Time (s)

[N03]' = Baseline=5400 s
. «0s «7200 s
-300s ~9000s
«600s ~=10800s
=1200s =12600s
~-1800s =14400s
«2700s =15480s
-3600s ~18000s
~19800s ~21600 s
~23400s =25200s
=30600 s

250 275
Wavelength (nm)

300

(b)
=Current (mA)
g 251 45 =Current(mA)
= 5 20f 5
& :
g 'E §
=8 15 <
0 < -
Z £ 104{"%
'\’ 1000 2000 3000
= 54 Time (s)
0 5000 10000 15000 20000
(d) Time (s)
0.3 [NO ] «=Baseline~=5400 s
0.25. 2 -0S ~7200s
. -300s =9000s
0.2. -600s =10800 s
: -1200s =12600s
2 015 -1800s =14400 s
-2700s =15480 s
0.1 -3600s =18000 s
19800 s =21600 s
0.05-
ol T T T
400 500 600 700

Wavelength (nm)

Figure $26. (a) Concentration versus time profile for 8500 s for the nitrate and nitrite
concentration obtained during 10 h CA study at 1.0 V (vs. Hg/HgO). (b) Current versus time
profile obtained during the constant 1.0 V (vs. Hg/HgO) applied potential electrolysis for AOR.
Quasi in situ UV-vis absorption spectra of (¢) nitrate and (d) nitrite formed in the electrolyte
obtained at different time intervals during AOR.
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Figure S27. Calibration curves made with different concentrations of nitrite. (a) Electronic

spectra of 0 to 100 uM of nitrite and (b) absorbance vs. concentration plot at the Amax of 541
nm wavelength of [NO,]".%¢
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Figure $28. Calibration curves made with different concentrations of nitrate. (a) Electronic
spectra of concentrations from 0 mM to 0.5 mM of KNOs3, and (b) absorbance vs. concentration
plot at the wavelength of 220 nm represent the calibration curve for [NOs] .2’
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Figure 29. Calibration curves made with different concentrations of hydroxyl amine (NH2OH).
(a) Electronic spectra of concentrations from 0 uM to 1000 uM of NH>OH, and (b) absorbance
vs. concentration plot at the wavelength of 510 nm represent the calibration curve for
NH,OH.*
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Figure $30. Comparison of total (a) Faradaic efficiency, and (b) yield rate of [NO23]” formed
during AOR catalysed by ZnMni.xWO4 and undoped MnWO4.
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Figure S31. Spectrophotometric quantification of [NO2s3] product formed via AOR using
Zno.1MnooWO4/NF as working electrode, 0.5 M NH3 in 0.5 M Na»SOs as electrolyte, and at
different applied potentials. (a) FE and cumulative yield rate of [NO23] for AOR at different
potentials. Time vs. current plot during CA-AOR of (b) Set 1, (e) Set 2, (i) Set 3; and
corresponding time vs. charge plots (c) Set 1, (f) Set 2, (j) Set 3. UV-vis absorption spectra
obtained after 1 h bulk electrolysis at various potentials for nitrate ([NOs]") (range from 200 to
350 nm), and nitrite ([NOz]") (range from 450 to 650 nm) of (d) Set 1, (g) Set 2, (k) Set 3. UV-
vis absorption spectra obtained after 1 h bulk electrolysis at various potentials for hydroxyl
amine ([NH2OH) of (h) Set 2, (1) Set 3. (BCA= Before chronoamperometric study; ACA= After
chronoamperometric study)
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Figure $32. '"H-NMR spectra of 1 mM cobalt tetraphenyl porphyrin (Co-TPP) complex after
reacting with NO generated from AOR using Zno.1MnooWO4/NF as anode, 0.5 M NHj3 in 0.5
M Na;S0Oy as electrolyte, and under different applied potentials. The quantity (moles) of NO
formed during AOR was calculated from the area (intensity) of the 'H peak at 8.9 ppm, which
originated due to binding of NO with the Co-TPP complex.?’
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Figure $33. Chromatograms of the gaseous products formed during AOR performed in single
compartment cell; (a) before CA, and after CA at (b) 0.8 V, (c) 0.9V, (d) 1.0 V, (e) 1.1 V, and

(e) 1.2 V for 1 hour using Zno.1Mno.9WO4/NF anode.
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Figure §34. Chromatograms obtained from the different volumes of nitrous oxide (NO)-
containing (retention time for NO: 5.1) gas mixture of (a) 1 mL and (b) 2 mL.
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Figure §35. Chromatograms of the gaseous products (NO) formed during AOR (a) before
AOR, after (b) 9000 s, and (c) 11000 s of CA performed in Hoffman apparatus (inverted burette
cell set-up, see Figure S59) using Zno.1MnooWO4/NF anode. (d) After CA for 1 h at an applied
potential of 0.2 V (vs. Hg/HgO) in presence of hydroxyl amine in the electrolyte instead of
ammoina, (e) before CA in presence of hydroxyl amine.
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Figure $36. Optical spectra of blank cobalt tetraphenyl porphyrin (Co-TPP) complex and after
reacting with NO generated from the hydroxyl amine (NH2OH) oxidation at applied potential
of 0.2 V (vs. Hg/HgO) for 1 h (before oxidation blue and after oxidation cyan colour) and
ammonia (NH3) oxidation reaction (AOR) (before oxidation pink and after oxidation orange
colour) 0.9 V (vs. Hg/HgO) for 1 h.
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Figure $37. "H-NMR spectra of blank cobalt tetraphenyl porphyrin (Co-TPP) complex (black)

and NO-bound complex formed from the gas generated by hydroxyl amine oxidation (red) and
AOR (blue).?
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Figure §38. AOR study conducted at different applied potentials in 0.5 M Na>SO4 containing
0.5 M NHj3 using Zno.0sMno.osWO4/NF as anode and quantification of [NO23]" product via
electronic spectroscopy. (a) FE and cumulative yield rate of [NO2s] for AOR at different
potentials. (b, e) Time vs. current and (¢, f) corresponding time vs. charge plots during the bulk
electrolysis study at five different potentials of set 1 and 2, respectively. (d, g) UV-vis
absorption spectra obtained after 1 h bulk electrolysis at various potentials for nitrate ((NO3]")
(range from 200 to 350 nm), nitrite ([NO2]") (range from 450 to 650 nm) of set 1 and 2,
respectively. UV-vis absorption spectra obtained after 1 h bulk electrolysis at various potentials
for hydroxyl amine ([NH20OH) of (h) Set 2. (BCA= Before chronoamperometry test; ACA=
After chronoamperometry test)
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Figure §39. 'H-NMR spectra of 1 mM cobalt tetraphenyl porphyrin (Co-TPP) complex after
reacting with NO generated from CA-AOR performed with Zno.osMno.osWO4/NF anode in 0.5
M NaxSOj4 containing 0.5 M NHj3 at different applied potentials. The quantity (moles) of NO
formed during AOR was calculated from the area (intensity) of the 'H peak at 8.9 ppm, which
originated due to binding of NO with the Co-TPP complex.?’
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Figure $40. Chromatograms of the gaseous products formed during AOR performed in single
compartment cell; (a) before CA, and after CA at (b) 0.8 V,(c) 0.9V, (d) 1.0V, (e) 1.1V, and
(e) 1.2 V for 1 hour using Znp.0sMno.os WO4/NF anode.
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Figure S41. AOR in 0.5 M NH3 co

ntaining 0.5 M NaxSO4 with MnWO4/NF at different applied

potential and quantification of [NO2;3]” product. (a) Faradaic efficiency and cumulative yield
rate of [NO23] for AOR at different potentials. (b)Time vs. current and (c) corresponding time
vs. charge plot during bulk electrolysis stydy at six different potential. (d) UV-vis absorption
spectra obtained after 1 h bulk electrolysis at various potentials for nitrate ([NOs]") (range from
200 to 350 nm), nitrite ([NO2]) (range from 450 to 650 nm).
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Figure $42. Reproducability test for Zno.1MnooWO4/NF up to 5 cycles of AOR-CA, showing
70£5 % [NO2s3] selectivity at 1.0 V (vs. Hg/HgO) applied potential for 3600 s. (a) FE with the
number of cycles. UV-vis absorption spectra for (b) nitrate, (c) nitrite. (In the 2" cycle, due to
the increased time of 5200 s, nitrate production is higher than that of the others).
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Figure $43. (a) Disk current for RRDE study in 0.5 M Na»S0O4, and (b) ring current for RRDE
study in 0.5 M NaSO4 containing 25 mM NHj3 using Zno.1MnooWO4/GC working electrode.

Table S5. RRDE data analysis based on the K-L analysis at different applied potentials.

) K- L Analysis No. of No.
Potential ofe 3
) electron change Kobs (x107)
Slope Intercept transferred @v)
2.05 16435 5474 1.864
1.95 1665.0 82.023 184
19 16214 115.63 1.89 9.673255371
1.85 15854 163.89 1.9331 (ibli) 6.672647872
18 1540 1 163.89 1.9899 6.482182824
1.75 1426.0 29773 2.149 3304045125
17 1262.6 41936 2427 2.077055987
1.65 1071.6 576.05 286 1283153961

Kobs (av.)
(x107)

4.915 (&3)

*Red-marked values correspond to data in the limiting current range, which was not taken
into account to determine the kobs, which solely comes from charge transfer limiting current
and negligible contribution from kinetic current.
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Figure $44. (a) Cyclic voltammetry (CV) studies for AOR with Zno.1Mno.9WO4/NF performed
in NH3 containng D>0O and H>O. (b) Current and charge vs time plots for the bCA study in H>O
and D>0. (c¢) Partial current density for [NO2/;3] production with a KIE value obtained of 3.2.
(d) Quantification of [NO2;3] in D2O through optical spectroscopy (UV-vis), (200 to 250 nm
for nitrate and 400 to 650 nm range for nitrite, BCA= Before chronoamperometry test; ACA=
After chronoamperometry test).
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Figure §45. (a) Time vs. current plot of bulk electrolysis study (red) and amount of charge
delivered during electrocatalysis (black) observed during hydroxyl amine oxidation using
Zno.1MnooWO4/NF at 0.35 V (vs. Hg/HgO). (b) UV-vis absorption spectra obtained after 1 h
bulk electrolysis for nitrate ([NO3]") (range from 200 to 350 nm), nitrite ([NO:]) (range from
450 to 650 nm). (BCA= Before chronoamperometry test; ACA= After chronoamperometry
test)
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Figure $46. (a) Current vs. time plot of bulk electrolysis study (black) and applied constant
potential (red) for the hydrazine oxidation using Zno.1MnooWO4/NF at 0.14 V (vs. Hg/HgO)
applied potentials in 0.5 M NH2NH> containing 0.5 M NaxSOs. (b) UV-vis absorption spectra
obtained after 1 h bulk electrolysis for nitrate ([NOs3]") (range from 200 to 350 nm), nitrite
(INO2]) (range from 450 to 650 nm). (BCA= Before chronoamperometry test; ACA= After
chronoamperometry test)
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Figure S$47. Gas chromatograms of the gaseous products during hydrazine oxidation at (a)
before bulk electrolysis (CA test) and after (b) 3600 s using Zno.1MnooWO4/NF anode.
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Figure §48. ] vs t plot of CA study performed at an applied potential of 0.9 V (vs. Hg/HgO)
for 3 h for the in-situ IR study.
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Figure §49. In-situ IR spectra acquired during AOR catalysed by Zno.1MnooWO4/NF for 2 h
at an applied potential of 0.8 V (vs. Hg/HgO) in 0.5 M Na,SO4 containing 0.5 M NH3 at room
temperature (28 °C). (a-c) Zoomed Surface spectrum or 3-D spectra of in-situ IR spectra at
wavenumber of 1000-1800 cm™'. (d) Some selected 2D spectra recorded during AOR. (e)
Concentration trends with time of some selected key peak intensities increased during AOR.'?
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Figure §50. Characteristic (solution) IR spectra of standard sample solutions made in deionised
water.
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Figure S51. UV-VIS diffuse reflectance spectra (DRS) of MnWO4, ZnWOs, and different
percentages of Zn-doped MnWOy.
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Figure S52. Mott-Schottky plot of material in 0.5 M Na>SO4 containing 0.5 M NHj3 at an
applied potential range of -1 to 1 V (vs. Hg/HgO) using (a) MnWOs, (b) Zno.osMng.osWO4, (¢)
Zn9.1MnooWO4, (d) Zno.14aMno gsWO4, (€) ZnWO4, and (f) bare carbon paper (CP) electrode.
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Figure §53. Projected density of states (pDOS) for (a) MnWO, (b) ZnygeMng e, WO, (c)
Zng13Mngy g, WO, calculated by using the density functional theory (DFT) + U-based
simulations. (d) Hole effective mass comparison between pristine MnWOQO4 and Zn-doped
compositions ( Zngy geMnggaW0O,, Zng13Mny g, WO, and Zngy 10Mny g4 W0O,). Band structure
of (a) MnWO0, (b) Zng g¢Mng.9a W0, (€) Zng13Mny g; WO, and (d) Zng10Mng g WO,.
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Figure S$54. Band-decomposed charge density distributions for VBM and CBM states plotted
at an iso-surface value of 3.24 x 107 ¢/A%. (a,b) Pristine MnWO4 showing homogeneous VBM
charge density on Mn (purple) and O (red) atoms, and CBM on W (grey), Mn (purple) atoms.
(c-h) Zn-doped compositions with increasing Zn concentration (green atoms) demonstrating
progressive charge localization in VBM states around specific Mn-O units, while CBM remains
distributed. Zn atoms show no electron density contribution, confirming their electronically

inert nature. The yellow-colored regions represent spatial distributions where electron density
exceeds the isosurface value of 3.24 x 107 e/A>.
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Figure §55. CA study using (a) Zno.1MnooWO4/NF and (b) Zno.osMno.osWO4/NF in 0.5 M

NaySO4 containing 0.5 M NHj3 for 24 hours at an applied potential of 1.0 V (vs. Hg/HgO).
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Figure §56. ICP-OES study of the electrolytes, (a) 0.5 M Na>SO4 containing 0.5 M NH3, and
(b) 0.5 M NaOH containing 0.5 M NH3 and plot of [WO4]?* leaching percentage from different
anodes (mentioned in the inset) after CA-AOR for 1 h at different potentials.

Table §6. ICP-OES data for the electrolytes obtained after the CA-AOR performed at different
potentials with MnWO4 and ZnxMn;xWO41in 0.5 M NH3 containing 0.5 Na;SOs.

Samples Condition Applied Leaching % W

(Na2S0a4) potential amount leaching
V) (ppm)

MnWO4 Na2SO4 0.8 0.02 0.188
0.9 0.02 0.188
1.0 0.04 0.376
1.1 0.05 0.470
1.2 0.04 0.376
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Zno.0sMno.gsWO4 Na2SO4 0.8 0.05 0.471
0.9 0.08 0.754
1.0 0.10 0.942
1.1 0.12 1.130
1.2 0.15 1.414
1.0% 1.02 9.87
Znp.1MnooWO4 Na2SO4 0.8 0.04 0.377
0.9 0.04 0.377
1.0 0.06 0.565
1.1 0.14 1.319
1.2 0.20 1.885
1.0* 1.11 10.367

*after 24 h of CA-AOR

Table S7. ICP-OES data for the electrolytes of the CA performed at different potentials with
MnWO4 and ZnxMn1xWO4in 0.5 M NH3 containing 0.5 M NaOH.

Samples Condition Applied Leaching % W
Potential Amount Leaching
V) (ppm)

MnWO4 NaOH 0.5 0.10 0.941

0.6 0.22 2.069

0.7 0.53 4.986

0.8 0.86 8.091

0.9 1.02 9.596

Z10.0sMno.osWO4 NaOH 0.5 0.15 1.414
0.6 0.24 2.262

0.7 0.85 8.011
0.8 1.24 11.686

0.9 0.97 9.142
Zn0.1Mno.oWO4 NaOH 0.5 1.20 11.309
0.6 1.69 15.928
0.7 1.88 17.718
0.8 2.06 19.414
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Figure §57. (a) CA-AOR using Zno.1MnooWO4/NF electrode at 1.0 V (vs. Hg/HgO) for 12 h. (b)
LSV polarization curves, (c) Ca, and (d) EIS at 1.0 V vs. Hg/HgO, before and after 12 h CA.
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Figure S§58. XPS survey spectrum recorded with the sample isolated from the
Zno.1MnooWO4/NF electrode after 24 h CA at 1.0 V (vs. Hg/HgO).
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Figure §59. Comparison of the deconvoluted core-level O 1s XPS spectra before and after 24
h CA-AOR study.

Figure S60. Post-catalytic FE-SEM image of the used Zno.1MnooWO4/NF electrode after 24 h
CA at an applied potential of 1.0 V (vs. Hg/HgO).
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Figure S61. (a) FE-SEM image of the used Zno.1MnooWO4/NF electrode after 24 h CA at 1.0
V (vs. Hg/HgO), (b) overlay of all elements, elemental mapping for (c) Zn, (d) Mn, (e) W, and
() O (in the overlay, pink colour represent Ni from the Ni-foam electrode support; scale bar: 2

pum).
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Figure $62. FE-SEM-EDX spectrum of the used Zno.1MnooWO4/NF electrode indicating the
presence of Zn, Mn, W, and O after a 24 h CA test at 1.0 V (vs. Hg/HgO).
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Figure $63. Post-catalytic TEM image and SAED pattern of the sample isolated from the used

Zno.1Mno oWO4/NF electrode after 24 h CA at an applied potential of 1.0 V (vs. Hg/HgO).

Table S8. Quantitative analysis of the TEM-EDX spectrum of Zng.1MnooWO4

1000 =

900

800

700 <

600 —

500 -

Counts

400 —

Element (keV) Mass% Atom%

O K (Ref.) 0.525 37.95 81.60

Mn K 5.894 13.45 8.42
Zn K 8.630 2.61 1.37
WM 1.774 4599 8.61
Total 100.00 100.00

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

Binding energy (keV)

Figure S64. TEM-EDX spectrum of the sample isolated from the used Zno.1Mno.oWO4/NF
electrode after 24 h chronoamperometry test at 1.0 V (vs. Hg/HgO).
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Figure §65. Cyclic voltammetric curves recorded in a two-electrode cell with interelectrode
separation of 1 cm in presence of NHj3 in the electrolyte and in absence of NH3 using

Z1n9.1MnooWO4/NF as an anode.
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Figure §66. (a) Cyclic voltammetric curves recorded in a two-electrode cell in Hoffman
apparatus (inverted burette cell set-up) with inter-electrode separation of approximately 8 cm.
(b) CA curve for 3 h bulk electrolysis in 0.5 M Na2SO4 only using Zno.1Mno.oWO4/NF(+)/(-)

graphite rod (GR).
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Figure S67. Picture of the two-electrode cell in Hoffman apparatus, marking on the solvent
front (a) before and (b) after bulk electrolysis using 0.5 M NH3 in 0.5 M NaxSOq as electrolyte.
Note: A minimal amount of gas evolved in the anode chamber, whereas 4.4 mL H> was found
to be the only product in the cathode chamber. (c) Before and (d) after the bulk electrolysis in
0.5 M Na;SO4 electrolyte (only 1.6 mL H> was formed at the same applied potential in the
cathodic chamber).
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