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Supplementary Method

Method S1

Scientific literature represents an important and reliable source of data in the field of materials science.
With years of accumulation, a substantial volume of experimental data is now available for constructing
robust datasets. In this study, the data used for regression model development were obtained through a
systematic review of 810 publications related to Mg-based solid-state hydrogen storage materials published
between 2005 and 2024. The literature was retrieved from databases such as Web of Science and Google
Scholar. During the initial screening, studies involving complex hydride systems (e.g., MgH>—LiBH4[1,2],
MgH>-AlHs[3-5]), Mg-based alloys, and Mg(BHa4):[6] were excluded. A total of 453 studies focusing
specifically on the catalytic regulation of hydrogen storage/release performance of MgH. were retained.
After further excluding papers lacking differential scanning calorimetry (DSC) characterization data, 420
publications were ultimately selected as valid sources for model training.

A total of 2,011 data entries were compiled for “MgH- + catalyst” composite systems, each containing
DSC measurements of the 7p. Among them, 1,349 samples additionally included the A47p before and after
catalyst addition, all of which were used for regression modeling. Given the significant influence of heating
rates on 7p[7,8], the dataset also records the heating rates for each sample, and all A7p values were
calculated under identical heating conditions to ensure data comparability and physical consistency.
Furthermore, to account for the effect of catalyst dosage on performance, the mass fraction of the added
catalyst was also recorded for each sample[9,10].

In addition, to further advance the field of solid-state hydrogen storage, we have developed a dedicated
database platform named Digital Hydrogen-S in a separate project. This platform provides processing
information, performance characterization, and morphological characterization data for MgH: and a broader
range of materials. The data from the present study has been integrated into this website, which is accessible

at https://s-hydrogendataplatform.nas.cpolar.cn.



Method S2

There is a discrepancy in the sampling points between the original XRD spectra from the literature and
databases, which is not conducive to subsequent modeling. To address this, the following standardization
process was adopted: all spectra were unified to an equidistant grid in the 26 range of 5° to 90° with a step

size of 426 = 0.02 using linear interpolation. The interpolation formula is as follows:

(26,-26,)

(11_10)

All relative intensities were normalized to the [0, 1] range using MinMaxScaler:

20 =26, + (I-1,) (1)
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In equations (1) and (2), 26 represents the diffraction angle, and / represents the relative intensity of the
spectrum.

To balance overall accuracy and computational cost, this study uniformly defines the diffraction angle
range of all XRD feature matrices as 5°-90°. Linear interpolation with a step size of 0.02° is applied to
ICDD XRD data, while quadratic interpolation with a step size of 0.01° is used for EXP XRD data.

To ensure good interpolation results and enhance the robustness of the program, the following design
was implemented: the coordinates of the top 20 peaks with the highest relative intensities in the original
spectrum were dynamically saved, and for repeated angles, the average intensity was taken to avoid
interpolation anomalies. Interpolation was performed using the linear method, and the diffraction angle
boundaries were extended to reduce edge effects in the interpolation. After interpolation, the intensity of the
nearest neighboring grid points was replaced to preserve key structural features. For samples with missing
intensity values in the standard interpolation grid, zero-padding was applied to ICDD XRD data, and
boundary extension was used for EXP XRD data. Since the spectra contain all representative diffraction
peaks and missing data occur mainly in non-characteristic regions, these approaches do not compromise

phase representation or regression model performance.



Method S3

To elucidate the complex nonlinear relationships between material features and dehydrogenation
performance, this study employs the SHapley Additive exPlanations (SHAP) method. SHAP quantifies the
marginal contribution of each feature to the prediction of an individual sample, under the following

axiomatic framework:

p= 3 SIMoIS[-D!

SN} M!

[£.(S L) —£,.(9)] (3)

In Equation (3), ¢; is the SHAP value of feature i, M is the total number of features, N denotes the
complete set of features, and SEN\{i} represents any subset that excludes feature i.

t-SNE is a nonlinear dimensionality reduction algorithm commonly used for the visualization of
high-dimensional data. The method optimizes the low-dimensional embedding by minimizing the
Kullback-Leibler divergence between the two distributions. The Kullback-Leibler divergence is calculated
as follows:

In Equation (4), pij represents the true distribution, and ¢;; represents the approximate distribution

Py

KL(PIl Q) => p, log 4)
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Method S4

In experimental studies, XRD patterns of synthesized samples often deviate from ideal diffraction
profiles due to factors such as grain size, lattice defects or stress, preferred crystallographic orientation, and
instrumental noise. These deviations typically manifest as peak broadening, peak splitting, and background
noise. To generate training and input data that better resemble experimental data reported in the literature,
we propose a simulation method for generating pseudo-experimental XRD patterns based on physical
principles and standard diffraction profiles. This method incorporates multiple factors, including
microstructural characteristics, instrumental parameters, and experimental noise. A comprehensive model
was developed to simulate the effects of crystallite size distribution, microstrain, thermal diffuse scattering,
and instrumental broadening. The crystallite size was randomly sampled within a defined range to enhance
the robustness and generalizability of the generated data.

The peak profiles were simulated using the Voigt function, which is the convolution of a Gaussian and

a Lorentzian function. The mathematical expression of the Voigt function is given by:
V(x)=fo G(x')L(x—x')dx' (5)
The Gaussian component represents the peak broadening caused by the instrument, and its full width at

half maximum (FWHM) is calculated using the Caglioti equation:

H,, = JU tan® 0+ Vian6 + W (6)

The Lorentzian component accounts for peak broadening caused by crystallite size and lattice strain,

and is calculated as follows:

Hsize = Kﬂl (7)
Dcos
H?tmin = 48 tan 0 (8)

The crystallite size is generated based on a skew normal distribution, whose probability density

f(x|u,aa)=§¢(x;”j®(a(%n ©

The thermal diffuse scattering effect is introduced by incorporating the Debye—Waller factor, which

function is given by:

accounts for the intensity attenuation caused by atomic thermal vibrations:



sin” 6
Irps =1, exp(—B JE J (10)

The preferred orientation of the crystal is simulated using the following equation:

- s
' \/l+(ﬂ2 —l)coszl//

A probabilistic triggering mechanism was employed to simulate peak splitting, where peak splitting

(11)

Ihkl =

occurs if the splitting probability P>0.3P > 0.3P>0.3. Background noise was diversified by incorporating

Gaussian white noise, impulsive noise, and baseline drift.
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Fig. S1 (a) Analysis of the uncertainties associated with manually extracting Tp values using

WebPlotDigitizer. (b) Standard deviation distribution of 26 peak positions extracted from XRD data. (c)

Intensity Std Dev

Standard deviation distribution of normalized peak intensity extracted from XRD data.
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Fig. S2 (a—c) Distribution of Tp for catalysts composed of different elemental species; (d—f) distribution of

ATp for catalysts composed of different elemental species; (g) distribution of Tp across catalyst categories;

(h) distribution of ATp across catalyst categories.
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Fig. S5 Interpolation performance of randomly selected samples from the prediction set. The figure

compares the original XRD patterns with those reconstructed by linear interpolation after normalization.
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Fig. S9 Symmetric matrix plots illustrating the relationships among locally kPCA features, environmental
variables, and the Tp: (a) derived from ICDD XRD data and (b) derived from EXP XRD data. The figures
include marginal distribution histograms along the diagonal, pairwise scatter plots with linear regression fits

in the lower triangle, and Pearson correlation heatmaps in the upper triangle.
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Fig. S12 Performance of non-optimal Tp prediction models constructed using ICDD XRD data. Each

subplot includes a scatter plot of predicted vs. actual values (left) and residual distribution (right),

corresponding to: (a) NMF+XGB, (b) NMF+RF, (¢) kPCA+XGB, (d) kPCA+LGBM, and (e) kPCA+RF.
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Fig. S14 Performance of non-optimal Tp prediction models constructed using EXP XRD data. Each subplot
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Fig. S20 Feature importance (bar plots) and SHAP analysis (dot plots) of Tp prediction models based on

EXP XRD data, constructed using: (a) NMF+XGB, (b) NMF+LGBM, (c) NMF+RF, (d) kPCA+LGBM, (e)
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Fig. S21 Feature importance (bar plots) and SHAP analysis (dot plots) of ATp prediction models based on

EXP XRD data, constructed using: (a) NMF+XGB, (b) NMF+LGBM, (c) NMF+RF, (d) kPCA+XGB, (e)

kPCA+RF.
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Fig. S23 Univariate SHAP analysis of ATp prediction models based on experimental XRD data. Each
subfigure includes heating rate analysis (left) and catalyst loading analysis (right), corresponding to: (a)
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Fig. S24 (a) Distribution of the prediction set (blue), constructed by augmenting ICDD XRD with simulated
experimental factors (such as grain refinement, etc.), and the training set (red) based on EXP XRD. The
bottom left shows a magnified view of the region highlighted by the red box. (b) Distribution of the training
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Fig. S25 Predicted results for 5,000 materials under 6 common environmental condition combinations.



Supplementary Tables

Table S1 MAE of Different Interpolation Methods on ICDD XRD Data at Various Step Sizes.

step linear nearest cubic
0.01 2.94E-21 2.52E-07 6.68E-10
0.02 4.33E-10 5.04E-07 1.47E-07
0.03 0.013 0.058 0.004
0.04 0.015 0.087 0.002
0.05 0.032 0.104 0.008
0.06 0.039 0.116 0.012
0.07 0.060 0.148 0.024
0.08 0.069 0.173 0.037
0.09 0.093 0.194 0.056
0.1 0.102 0.205 0.071
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Table S2 MAE of Different Interpolation Methods on EXP XRD Data at Various Step Sizes.

step linear quadratic cubic
0.1 0.019 0.020 0.020
0.09 0.018 0.019 0.019
0.08 0.017 0.018 0.018
0.07 0.016 0.017 0.017
0.06 0.015 0.015 0.016
0.05 0.014 0.014 0.014
0.04 0.012 0.012 0.012
0.03 0.011 0.010 0.011
0.02 0.008 0.008 0.008
0.01 0.005 0.005 0.005
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Table S3 Fit Metrics, Error Metrics, and Residual Analysis Metrics for Training Set, Test Set, and

10-Fold-Cross-Validation after Hyperparameter Tuning for Various Dimensionality Reduction Methods and

Model Combinations Based on ICDD XRD Data.

Tp(°C) ATp(°C)
Model Metric
Train Test 10 Fold Train Test 10 Fold
R? 0.961 0.818 0.823 0.984 0.789 0.775
RMSE 11.64 22.89 24.15 5.01 15.8 18.9
MAE 6.25 14.92 14.79 1.44 11.24 11.45
NMF+XGB
Mean resid 0 -4.28 — 0 0.08 —
Std Dev resid 11.63 22.48 — 5.01 15.8 —
Skewn resid 0.17 -1.37 — -5.04 -0.72 —
R? 0.968 0.848 0.822 0.984 0.762 0.752
RMSE 10.64 20.9 24.29 5.03 21.26 19.25
MAE 5.36 12.74 14.630 2.62 12.36 11.42
NMF+LGBM
Mean resid 0 -3.13 — 0 -1.87 —
Std Dev resid 10.63 20.66 — 5.03 21.18 —
Skewn resid -0.04 -1.91 — -0.92 -1.64 —
R? 0.91 0.808 0.775 0.959 0.718 0.777
RMSE 17.71 23.5 27.5 8.05 23.15 18.4
MAE 12.44 16.88 19.74 4.89 14.25 11.97
NMF+RF
Mean resid 0.47 -3.94 — -0.29 2.4 —
Std Dev resid 17.71 23.16 — 8.05 23.02 —
Skewn resid 0.71 -0.54 — -0.52 -1.01 —
R? 0.946 0.831 0.804 0.975 0.741 0.75
RMSE 13.82 22.06 26.1 6.3 22.2 19.61
kPCA+XGB
MAE 8.78 14.13 15.84 3.72 13.12 11.51
Mean resid 0.000 -2.380 — 0 -0.59 —
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kPCA+LGBM

kPCA+RF

Std Dev resid
Skewn resid
RZ

RMSE

MAE

Mean resid
Std Dev resid
Skewn resid
R2

RMSE

MAE

Mean resid
Std Dev resid

Skewn resid

13.820

0.220

0.959

12.000

6.810

11.99

0.21

0.888

19.78

13.69

0.43

19.78

0.65

21.930

-0.850

0.840

21.400

14.160

-2.23

21.29

-1.29

0.789

24.6

17.73

-4.48

24.19

-0.51

0.802

25.74

16.36

0.746

29.3

21.2

6.3

-0.63

0.966

7.340

3.9

0.000

7.340

-0.020

0.886

13.47

8.47

-0.21

13.47

-0.75

22.19

-0.6

0.735

22.46

13.49

-1.320

24.420

-0.750

0.684

24.73

15.160

-1.66

26.67

-1.34

0.769

18.78

11.36

0.735

20.23

13.93
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Table S4 Fitting metrics, error metrics, and residual analysis results for combinations of dimensionality

reduction methods and regression models based on EXP XRD data, evaluated on the training set, test set,

and 10-fold cross-validation after hyperparameter optimization.

Tp(°C) ATp(°C)
Model Metric
Train Test 10 Fold Train Test 10 Fold
R? 0.974 0.852 0.864 0.984 0.805 0.765
RMSE 8.035 19.496 20.285 4.829 18.063 17.772
MAE 3.517 11.134 11.662 3.28 10.761 10.077
NMF+XGB
Mean resid 0 -1.23 — 0 -0.33 —
Std Dev resid 8.03 19.46 — 4.83 18.06 —
Skewn resid 0.19 -0.52 — -0.19 1.29 —
R? 0.976 0.851 0.851 0.981 0.86 0.783
RMSE 7.093 19.597 21.537 5.278 12.523 17.599
MAE 3.555 12.814 13.766 3.049 7.302 9.89
NMF+LGBM
Mean_resid 0 -2.18 — 0 -1.63 —
Std Dev_resid 7.09 19.47 — 5.28 12.42 —
Skewn_resid -2.42 -0.28 — -0.5 -2.16 —
R? 0.937 0.728 0.784 0.968 0.859 0.785
RMSE 14.266 26.424 26.076 6.883 13.025 17.726
MAE 9.768 18.759 18.706 4.183 8.677 11.157
NMF+RF
Mean_resid 0.24 -3.25 — -0.26 2.11 —
Std Dev_resid 14.26 26.22 — 6.88 12.85 —
Skewn_resid 1.06 0.11 — -0.28 -1.28 —
R? 0.975 0.88 0.88 0.985 0.865 0.814
RMSE 7.593 17.551 18.89 3.857 12.767 16.329
kPCA+XGB
MAE 2.923 9.935 10.919 2.625 7.73 9.118
Mean_resid 0 -0.99 — 0 -1.22 —
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kPCA+LGBM

kPCA-+RF

Std Dev_resid

Skewn_resid

R2

RMSE

MAE
Mean_resid
Std Dev_resid

Skewn_resid
R2

RMSE

MAE
Mean_resid
Std Dev_resid

Skewn_resid

7.59

0.02

0.977

8.57

4.993

0.06

8.57

-0.51

0.963

10.873

6.518

0.34

10.87

0.86

17.52

0.8

0.88

17.526

10.976

-0.18

17.53

0.17

0.809

22.159

15.458

-1.48

22.11

0.43

0.869

19.949

12.149

0.82

23.7

16.088

3.86

0.25

0.965

7.204

3.938

0.01

7.2

-1.32

0.97

6.647

4.026

-0.37

6.64

-0.47

12.71

-1.61

0.885

11.797

7.738

-1.44

11.71

-1.35

0.865

12.751

8.263

-2.58

12.49

-1.2

0.788

17.452

9.767

0.807

16.741

10.479
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Table S5 Evaluation metrics of the ensemble models trained using Materials Project features.

: Tp ATp
Model Metric - -
Train Test Train Test
R? 0.9648 0.7286 0.9719 0.7678
LGBM RMSE 4.2467 31.3495 0.4521 20.2632
MAE 6.449 21.2871 4.0237 13.7961
R? 0.844 0.6485 0.8324 0.6857
RF RMSE 23.2067 35.6792 16.9013 23.5751
MAE 16.6152 26.4776 11.9954 17.5439
R? 0.9792 0.7616 0.9892 0.81
XGB RMSE 8.4748 29.3825 4.2864 18.3265

MAE 5.3128 19.5527  2.9031 12.812
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Table S6 Evaluation metrics of the 1D-CNN models trained on ICDD-XRD and EXP-XRD datasets.

Tp(°C ATp(°C

Model Metric - p(C) - p(©)

Train Test Train Test
2
1CDD R 0.83 0.77 0.89 0.72
MAE 15.36 16.23 8.34 14.32
R? 0.82 0.74 0.86 0.71
EXP

MAE 15.74 16.65 8.97 14.66
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Table S7 Evaluation metrics for the ablation configuration with XRD-derived features removed

Model Split R? MAE RMSE
Train 0.448 33.544 42.182

XGB Test 0.158 37.852 46.509
10 Fold 0.363 36.254 45.113

Train 0.457 32.493 41.85

LGBM Test 0.087 39.734 48.418
10 Fold 0.325 37.246 46.433

Train 0.423 34.393 43.135

RF Test 0.121 38.951 47.513
10 Fold 0.345 36.986 45.745
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Table S8 Comparison between the predictions of the EXP XRD model and new experimental data reported

in 2025 that are not included in the training dataset.

Catalyst Mass Heating ) Predicted
Formula ; . Experimental Tp(°C) Ref.
Fraction(wt%) Rate(°C/min) Tp(°C)
3 270.1 290.8
5 278.5 298.6
FeMoO@NCN 10
7 289.4 316.4
10 295.1 320.5
[11]
3353 346.9
341.2 352.3
NCN 10
360.5 380.3
10 369.7 389.9
323.2 313.5
329.9 321.9
Co/C 10 [12]
10 3353 327.2
12 341.2 335.7
9 374 383.4
, 12 382.3 403.7
TiaNTx 10 [13]
15 392.1 407.4
20 400.1 415.5
245 228.2
. ) 258.5 238
TiO»-C-Ni 8 [14]
10 266.8 251
13 277.7 275.6
Ni(HCOO),-300rpm+TPF 10 275 296.8
Ni(HCOO),-500rpm 10 279 260.5 [15]
(NiHCOO),-300rpm 10 312 337.3
NF 10 10 335.2 342.5
NF-200 10 10 325.7 354.2
NF-300 10 10 319.2 3223 [16]
NF-400 10 10 327.3 320.5
NF-500 10 10 356.8 382.7
5 235 211.6
VNbC 5 [17]
10 263 243.9
Ni/NiO@C 10 212.8 247.5 [18]
307.3 285
. 10 332.7 319.2
Ni@SC 5 [19]
15 347.3 3394
20 360.5 350.7
5 307.3 314.9
FeVO4/CNT 6 10 332.7 348.5 [20]
15 338.8 349.7
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NiO

CuMoOq4

Ti0,/C/N1

Ni&C

15

10
10

20

10

10

10

342.6
256.9
2779
291.7
302.9
351.3
359.8
367.5
307.3
294.8
266.8
257.6
320.5

352
289.6
315.1
335.6
349.8

363
368.3
383.8
329.7

313
293.4
272.9
344.1

[21]

[22]
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Table S9 Promising catalyst candidates for MgH: dehydrogenation identified by high-throughput prediction.

Formula Catalyst Mass Fraction(wt%) Heating Rate(°C/min) Predicted Tp(°C)
CaFe4Oy 10 2 197.0
NiZr, 10 2 204.4
RuioY10Cio 10 2 206.5
NaFeF3; 10 2 215.2
TbMnsGes 10 2 215.3
Zn,Co3TeOs 10 5 217.0
Pr,0,S04 10 2 217.3
SnS, 5 2 218.9
Ko TiFs 10 2 220.6
SrZn0O; 10 2 220.8
Bis(GeOs)3 10 2 222.0
Nd,Ti4O1; 10 2 2222
CusV20ig 10 2 222.3
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