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Supplementary Method 

Method S1 

Scientific literature represents an important and reliable source of data in the field of materials science. 

With years of accumulation, a substantial volume of experimental data is now available for constructing 

robust datasets. In this study, the data used for regression model development were obtained through a 

systematic review of 810 publications related to Mg-based solid-state hydrogen storage materials published 

between 2005 and 2024. The literature was retrieved from databases such as Web of Science and Google 

Scholar. During the initial screening, studies involving complex hydride systems (e.g., MgH₂–LiBH₄[1,2], 

MgH₂–AlH₃[3–5]), Mg-based alloys, and Mg(BH₄)₂[6] were excluded. A total of 453 studies focusing 

specifically on the catalytic regulation of hydrogen storage/release performance of MgH₂ were retained. 

After further excluding papers lacking differential scanning calorimetry (DSC) characterization data, 420 

publications were ultimately selected as valid sources for model training. 

A total of 2,011 data entries were compiled for “MgH₂ + catalyst” composite systems, each containing 

DSC measurements of the Tp. Among them, 1,349 samples additionally included the ΔTp before and after 

catalyst addition, all of which were used for regression modeling. Given the significant influence of heating 

rates on Tp[7,8], the dataset also records the heating rates for each sample, and all ΔTp values were 

calculated under identical heating conditions to ensure data comparability and physical consistency. 

Furthermore, to account for the effect of catalyst dosage on performance, the mass fraction of the added 

catalyst was also recorded for each sample[9,10]. 

In addition, to further advance the field of solid-state hydrogen storage, we have developed a dedicated 

database platform named Digital Hydrogen-S in a separate project. This platform provides processing 

information, performance characterization, and morphological characterization data for MgH₂ and a broader 

range of materials. The data from the present study has been integrated into this website, which is accessible 

at https://s-hydrogendataplatform.nas.cpolar.cn. 

 

  



 

4 

 

Method S2 

There is a discrepancy in the sampling points between the original XRD spectra from the literature and 

databases, which is not conducive to subsequent modeling. To address this, the following standardization 

process was adopted: all spectra were unified to an equidistant grid in the 2θ range of 5° to 90° with a step 

size of Δ2θ = 0.02 using linear interpolation. The interpolation formula is as follows: 
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All relative intensities were normalized to the [0, 1] range using MinMaxScaler: 
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In equations (1) and (2), 2θ represents the diffraction angle, and I represents the relative intensity of the 

spectrum. 

To balance overall accuracy and computational cost, this study uniformly defines the diffraction angle 

range of all XRD feature matrices as 5°-90°. Linear interpolation with a step size of 0.02° is applied to 

ICDD XRD data, while quadratic interpolation with a step size of 0.01° is used for EXP XRD data. 

To ensure good interpolation results and enhance the robustness of the program, the following design 

was implemented: the coordinates of the top 20 peaks with the highest relative intensities in the original 

spectrum were dynamically saved, and for repeated angles, the average intensity was taken to avoid 

interpolation anomalies. Interpolation was performed using the linear method, and the diffraction angle 

boundaries were extended to reduce edge effects in the interpolation. After interpolation, the intensity of the 

nearest neighboring grid points was replaced to preserve key structural features. For samples with missing 

intensity values in the standard interpolation grid, zero-padding was applied to ICDD XRD data, and 

boundary extension was used for EXP XRD data. Since the spectra contain all representative diffraction 

peaks and missing data occur mainly in non-characteristic regions, these approaches do not compromise 

phase representation or regression model performance. 
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Method S3 

To elucidate the complex nonlinear relationships between material features and dehydrogenation 

performance, this study employs the SHapley Additive exPlanations (SHAP) method. SHAP quantifies the 

marginal contribution of each feature to the prediction of an individual sample, under the following 

axiomatic framework: 
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In Equation (3), ϕi is the SHAP value of feature i, M is the total number of features, N denotes the 

complete set of features, and S⊆N∖{i} represents any subset that excludes feature i. 

t-SNE is a nonlinear dimensionality reduction algorithm commonly used for the visualization of 

high-dimensional data. The method optimizes the low-dimensional embedding by minimizing the 

Kullback-Leibler divergence between the two distributions. The Kullback-Leibler divergence is calculated 

as follows: 

In Equation (4), pij represents the true distribution, and qij represents the approximate distribution 
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Method S4 

In experimental studies, XRD patterns of synthesized samples often deviate from ideal diffraction 

profiles due to factors such as grain size, lattice defects or stress, preferred crystallographic orientation, and 

instrumental noise. These deviations typically manifest as peak broadening, peak splitting, and background 

noise. To generate training and input data that better resemble experimental data reported in the literature, 

we propose a simulation method for generating pseudo-experimental XRD patterns based on physical 

principles and standard diffraction profiles. This method incorporates multiple factors, including 

microstructural characteristics, instrumental parameters, and experimental noise. A comprehensive model 

was developed to simulate the effects of crystallite size distribution, microstrain, thermal diffuse scattering, 

and instrumental broadening. The crystallite size was randomly sampled within a defined range to enhance 

the robustness and generalizability of the generated data. 

The peak profiles were simulated using the Voigt function, which is the convolution of a Gaussian and 

a Lorentzian function. The mathematical expression of the Voigt function is given by: 

 ( ) ( )V( x ) G x L x x dx


  

−
= −  (5) 

The Gaussian component represents the peak broadening caused by the instrument, and its full width at 

half maximum (FWHM) is calculated using the Caglioti equation: 

 2= + +instH U tan Vtan W   (6) 

The Lorentzian component accounts for peak broadening caused by crystallite size and lattice strain, 

and is calculated as follows: 

 =size

K
H

D cos




 (7) 

 4=strainH tan   (8) 

The crystallite size is generated based on a skew normal distribution, whose probability density 

function is given by: 
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The thermal diffuse scattering effect is introduced by incorporating the Debye–Waller factor, which 

accounts for the intensity attenuation caused by atomic thermal vibrations: 
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The preferred orientation of the crystal is simulated using the following equation: 

 
( )

0
2 21 1

hklI I
cos



 
= 

+ −
 (11) 

A probabilistic triggering mechanism was employed to simulate peak splitting, where peak splitting 

occurs if the splitting probability P>0.3P > 0.3P>0.3. Background noise was diversified by incorporating 

Gaussian white noise, impulsive noise, and baseline drift. 
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Supplementary Figures 

 

Fig. S1 (a) Analysis of the uncertainties associated with manually extracting Tp values using 

WebPlotDigitizer. (b) Standard deviation distribution of 2θ peak positions extracted from XRD data. (c) 

Standard deviation distribution of normalized peak intensity extracted from XRD data. 
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Fig. S2 (a–c) Distribution of Tp for catalysts composed of different elemental species; (d–f) distribution of 

ΔTp for catalysts composed of different elemental species; (g) distribution of Tp across catalyst categories; 

(h) distribution of ΔTp across catalyst categories. 
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Fig. S3 Feature clustering analysis of selected samples using t-SNE and K-Means. 
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Fig. S4 Probability density distribution of diffraction angles corresponding to relative diffraction intensities 

in the catalyst XRD data from the database. 
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Fig. S5 Interpolation performance of randomly selected samples from the prediction set. The figure 

compares the original XRD patterns with those reconstructed by linear interpolation after normalization. 
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Fig. S6 Performance of the KNN imputation model combined with a weighted loss function for fitting 

missing boundary points. (a) MAE (red) and RMSE (blue) trends with varying neighbor counts using 

Uniform (solid lines) and Distance (dashed lines) sample distance metrics. (b) Trends of peak position shifts 

and peak intensity deviations as boundary missing intensity varies. (c) Imputation example for a random 

sample: red points represent original data, blue solid line is the fitted spectrum after boundary 

supplementation, and the gray shaded area indicates the region of missing data in the original spectrum. 
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Fig. S7 Linear correlation analysis of features. Pearson correlation heatmaps of all components after 

dimensionality reduction of the XRD feature matrix using (a) NMF and (b) kPCA. 
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Fig. S8 Relationships among local NMF features, environmental variables, and the Tp. Correspond to EXP 

XRD data. Variables are ordered as follows from top to bottom on the left and left to right along the bottom: 

Tp, Cat. Frac., Heating Rate, NMF1, NMF2, NMF3, NMF4, NMF5. Each panel includes marginal 

distribution histograms on the diagonal, pairwise scatter plots with linear regression fits in the lower triangle, 

and a Pearson correlation heatmap in the upper triangle. 
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Fig. S9 Symmetric matrix plots illustrating the relationships among locally kPCA features, environmental 

variables, and the Tp: (a) derived from ICDD XRD data and (b) derived from EXP XRD data. The figures 

include marginal distribution histograms along the diagonal, pairwise scatter plots with linear regression fits 

in the lower triangle, and Pearson correlation heatmaps in the upper triangle. 
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Fig. S10 Symmetric matrix plot showing the relationships between the locally NMF features, environmental 

variables, and the ΔTp: (a) derived from ICDD XRD data and (b) derived from EXP XRD data. The figure 

includes: marginal distribution histograms along the diagonal, pairwise scatter plots with linear regression 

fits in the lower triangle, and a Pearson correlation heatmap in the upper triangle. 
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Fig. S11 Symmetric matrix plot showing the relationships between the locally kPCA features, environmental 

variables, and the ΔTp: (a) derived from ICDD XRD data and (b) derived from EXP XRD data. The figure 

includes: marginal distribution histograms along the diagonal, pairwise scatter plots with linear regression 

fits in the lower triangle, and a Pearson correlation heatmap in the upper triangle. 
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Fig. S12 Performance of non-optimal Tp prediction models constructed using ICDD XRD data. Each 

subplot includes a scatter plot of predicted vs. actual values (left) and residual distribution (right), 

corresponding to: (a) NMF+XGB, (b) NMF+RF, (c) kPCA+XGB, (d) kPCA+LGBM, and (e) kPCA+RF. 
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Fig. S13 Performance of non-optimal ΔTp prediction models constructed using ICDD XRD data. Each 

subplot includes a scatter plot of predicted vs. actual values (left) and residual distribution (right), 

corresponding to: (a) NMF+XGB, (b) NMF+LGBM, (c) NMF+RF, (d) kPCA+XGB, (e) kPCA+LGBM, (f) 

kPCA+RF. 
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Fig. S14 Performance of non-optimal Tp prediction models constructed using EXP XRD data. Each subplot 

includes a scatter plot of predicted vs. actual values (left) and residual distribution (right), corresponding to: 

(a) NMF+XGB, (b) NMF+LGBM, (c) NMF+RF, (d) kPCA+LGBM, (e) kPCA+RF. 
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Fig. S15 Performance of non-optimal ΔTp prediction models constructed using EXP XRD data. Each 

subplot includes a scatter plot of predicted vs. actual values (left) and residual distribution (right), 

corresponding to: (a) NMF+XGB, (b) NMF+LGBM, (c) NMF+RF, (d) kPCA+XGB, (e) kPCA+LGBM, (f) 

kPCA+RF. 
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Fig. S16 Feature importance (bar plots) and SHAP analysis (dot plots) of suboptimal Tp models constructed 

using ICDD XRD data:(a) kPCA+XGB, (b) kPCA+LGBM, (c) kPCA+RF, (d) NMF+XGB, (e) NMF+RF. 
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Fig. S17 Feature importance (bar plots) and SHAP analysis (dot plots) for ΔTp prediction models 

constructed using ICDD XRD data: (a) kPCA+XGB, (b) kPCA+LGBM, (c) kPCA+RF (d) NMF+LGBM, (e) 

NMF+RF,. 
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Fig. S18 Univariate SHAP analysis of non-optimal Tp prediction models constructed using ICDD XRD data. 

Each subplot includes SHAP dependence plots for heating rate (left) and catalyst loading (right), 

corresponding to:(a) NMF+XGB, (b) NMF+RF, (c) kPCA+XGB, (d) kPCA+LGBM, (e) kPCA+RF. 
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Fig. S19 Univariate SHAP analysis of ΔTp prediction models constructed using ICDD XRD data. Each 

subplot includes SHAP dependence plots for heating rate (left) and catalyst loading (right), corresponding 

to:(a) NMF+LGBM, (b) NMF+RF, (c) kPCA+XGB, (d) kPCA+LGBM, (e) kPCA+RF. 
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Fig. S20 Feature importance (bar plots) and SHAP analysis (dot plots) of Tp prediction models based on 

EXP XRD data, constructed using: (a) NMF+XGB, (b) NMF+LGBM, (c) NMF+RF, (d) kPCA+LGBM, (e) 

kPCA+RF. 
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Fig. S21 Feature importance (bar plots) and SHAP analysis (dot plots) of ΔTp prediction models based on 

EXP XRD data, constructed using: (a) NMF+XGB, (b) NMF+LGBM, (c) NMF+RF, (d) kPCA+XGB, (e) 

kPCA+RF. 

 

  



 

29 

 

 

Fig. S22 Univariate SHAP analysis of Tp prediction models based on EXP XRD data. Each subfigure 

includes heating rate analysis (left) and catalyst loading analysis (right), corresponding to: (a) NMF+XGB, 

(b) NMF+LGBM, (c) NMF+RF, (d) kPCA+LGBM, (e) kPCA+RF. 
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Fig. S23 Univariate SHAP analysis of ΔTp prediction models based on experimental XRD data. Each 

subfigure includes heating rate analysis (left) and catalyst loading analysis (right), corresponding to: (a) 

NMF+XGB, (b) NMF+LGBM, (c) NMF+RF, (d) kPCA+XGB, (e) kPCA+LGBM, and (f) kPCA+RF. 
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Fig. S24 (a) Distribution of the prediction set (blue), constructed by augmenting ICDD XRD with simulated 

experimental factors (such as grain refinement, etc.), and the training set (red) based on EXP XRD. The 

bottom left shows a magnified view of the region highlighted by the red box. (b) Distribution of the training 

set (red) using ICDD XRD as features, and the corresponding prediction set (blue). 
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Fig. S25 Predicted results for 5,000 materials under 6 common environmental condition combinations. 
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Supplementary Tables 

Table S1 MAE of Different Interpolation Methods on ICDD XRD Data at Various Step Sizes. 

step linear nearest cubic 

0.01 2.94E-21 2.52E-07 6.68E-10 

0.02 4.33E-10 5.04E-07 1.47E-07 

0.03 0.013 0.058 0.004 

0.04 0.015 0.087 0.002 

0.05 0.032 0.104 0.008 

0.06 0.039 0.116 0.012 

0.07 0.060  0.148 0.024 

0.08 0.069 0.173 0.037 

0.09 0.093 0.194 0.056 

0.1 0.102 0.205 0.071 
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Table S2 MAE of Different Interpolation Methods on EXP XRD Data at Various Step Sizes. 

step linear quadratic cubic 

0.1 0.019  0.020  0.020  

0.09 0.018  0.019  0.019  

0.08 0.017  0.018  0.018  

0.07 0.016  0.017  0.017  

0.06 0.015  0.015  0.016  

0.05 0.014  0.014  0.014  

0.04 0.012  0.012  0.012  

0.03 0.011  0.010  0.011  

0.02 0.008  0.008  0.008  

0.01 0.005  0.005  0.005  
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Table S3 Fit Metrics, Error Metrics, and Residual Analysis Metrics for Training Set, Test Set, and 

10-Fold-Cross-Validation after Hyperparameter Tuning for Various Dimensionality Reduction Methods and 

Model Combinations Based on ICDD XRD Data. 

Model Metric 
Tp(°C) ΔTp(°C) 

Train Test 10 Fold Train Test 10 Fold 

NMF+XGB 

R2 0.961 0.818 0.823 0.984 0.789 0.775 

RMSE 11.64 22.89 24.15 5.01 15.8 18.9 

MAE 6.25 14.92 14.79 1.44 11.24 11.45 

Mean resid 0 -4.28 — 0 0.08 — 

Std Dev resid 11.63 22.48 — 5.01 15.8 — 

Skewn resid 0.17 -1.37 — -5.04 -0.72 — 

        

NMF+LGBM 

R2 0.968 0.848 0.822 0.984 0.762 0.752 

RMSE 10.64 20.9 24.29 5.03 21.26 19.25 

MAE 5.36 12.74 14.630 2.62 12.36 11.42 

Mean resid 0 -3.13 — 0 -1.87 — 

Std Dev resid 10.63 20.66 — 5.03 21.18 — 

Skewn resid -0.04 -1.91 — -0.92 -1.64 — 

        

NMF+RF 

R2 0.91 0.808 0.775 0.959 0.718 0.777 

RMSE 17.71 23.5 27.5 8.05 23.15 18.4 

MAE 12.44 16.88 19.74 4.89 14.25 11.97 

Mean resid 0.47 -3.94 — -0.29 -2.4 — 

Std Dev resid 17.71 23.16 — 8.05 23.02 — 

Skewn resid 0.71 -0.54 — -0.52 -1.01 — 

        

kPCA+XGB 

R2 0.946 0.831 0.804 0.975 0.741 0.75 

RMSE 13.82 22.06 26.1 6.3 22.2 19.61 

MAE 8.78 14.13 15.84 3.72 13.12 11.51 

Mean resid 0.000 -2.380 — 0 -0.59 — 
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Std Dev resid 13.820 21.930 — 6.3 22.19 — 

Skewn resid 0.220 -0.850 — -0.63 -0.6 — 

        

kPCA+LGBM 

R2 0.959 0.840 0.802 0.966 0.735 0.769 

RMSE 12.000 21.400 25.74 7.340 22.46 18.78 

MAE 6.810 14.160 16.36 3.9 13.49 11.36 

Mean resid 0 -2.23 — 0.000 -1.320 — 

Std Dev resid 11.99 21.29 — 7.340 24.420 — 

Skewn resid 0.21 -1.29 — -0.020 -0.750 — 

        

kPCA+RF 

R2 0.888 0.789 0.746 0.886 0.684 0.735 

RMSE 19.78 24.6 29.3 13.47 24.73 20.23 

MAE 13.69 17.73 21.2 8.47 15.160 13.93 

Mean resid 0.43 -4.48 — -0.21 -1.66 — 

Std Dev resid 19.78 24.19 — 13.47 26.67 — 

Skewn resid 0.65 -0.51 — -0.75 -1.34 — 
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Table S4 Fitting metrics, error metrics, and residual analysis results for combinations of dimensionality 

reduction methods and regression models based on EXP XRD data, evaluated on the training set, test set, 

and 10-fold cross-validation after hyperparameter optimization. 

Model Metric 

Tp(°C) ΔTp(°C) 

Train Test 10 Fold Train Test 10 Fold 

NMF+XGB 

R2 0.974 0.852 0.864 0.984 0.805 0.765 

RMSE 8.035 19.496 20.285 4.829 18.063 17.772 

MAE 3.517 11.134 11.662 3.28 10.761 10.077 

Mean resid 0 -1.23 — 0 -0.33 — 

Std Dev resid 8.03 19.46 — 4.83 18.06 — 

Skewn resid 0.19 -0.52 — -0.19 1.29 — 
        

NMF+LGBM 

R2 0.976 0.851 0.851 0.981 0.86 0.783 

RMSE 7.093 19.597 21.537 5.278 12.523 17.599 

MAE 3.555 12.814 13.766 3.049 7.302 9.89 

Mean_resid 0 -2.18 — 0 -1.63 — 

Std Dev_resid 7.09 19.47 — 5.28 12.42 — 

Skewn_resid -2.42 -0.28 — -0.5 -2.16 — 
        

NMF+RF 

R2 0.937 0.728 0.784 0.968 0.859 0.785 

RMSE 14.266 26.424 26.076 6.883 13.025 17.726 

MAE 9.768 18.759 18.706 4.183 8.677 11.157 

Mean_resid 0.24 -3.25 — -0.26 -2.11 — 

Std Dev_resid 14.26 26.22 — 6.88 12.85 — 

Skewn_resid 1.06 0.11 — -0.28 -1.28 — 
        

kPCA+XGB 

R2 0.975 0.88 0.88 0.985 0.865 0.814 

RMSE 7.593 17.551 18.89 3.857 12.767 16.329 

MAE 2.923 9.935 10.919 2.625 7.73 9.118 

Mean_resid 0 -0.99 — 0 -1.22 — 
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Std Dev_resid 7.59 17.52 — 3.86 12.71 — 

Skewn_resid 0.02 0.8 — 0.25 -1.61 — 
        

kPCA+LGBM 

R2 0.977 0.88 0.869 0.965 0.885 0.788 

RMSE 8.57 17.526 19.949 7.204 11.797 17.452 

MAE 4.993 10.976 12.149 3.938 7.738 9.767 

Mean_resid 0.06 -0.18 — 0.01 -1.44 — 

Std Dev_resid 8.57 17.53 — 7.2 11.71 — 

Skewn_resid -0.51 0.17 — -1.32 -1.35 — 
        

kPCA+RF 

R2 0.963 0.809 0.82 0.97 0.865 0.807 

RMSE 10.873 22.159 23.7 6.647 12.751 16.741 

MAE 6.518 15.458 16.088 4.026 8.263 10.479 

Mean_resid 0.34 -1.48 — -0.37 -2.58 — 

Std Dev_resid 10.87 22.11 — 6.64 12.49 — 

Skewn_resid 0.86 0.43 — -0.47 -1.2 — 
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Table S5 Evaluation metrics of the ensemble models trained using Materials Project features. 

Model Metric 
Tp ΔTp 

Train Test Train Test 

LGBM 

R2 0.9648 0.7286 0.9719 0.7678 

RMSE 4.2467 31.3495 0.4521 20.2632 

MAE 6.449 21.2871 4.0237 13.7961 

RF 

R2 0.844 0.6485 0.8324 0.6857 

RMSE 23.2067 35.6792 16.9013 23.5751 

MAE 16.6152 26.4776 11.9954 17.5439 

XGB 

R2 0.9792 0.7616 0.9892 0.81 

RMSE 8.4748 29.3825 4.2864 18.3265 

MAE 5.3128 19.5527 2.9031 12.812 
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Table S6 Evaluation metrics of the 1D-CNN models trained on ICDD-XRD and EXP-XRD datasets. 

Model Metric 
Tp(°C) ΔTp(°C) 

Train Test Train Test 

ICDD 
R2 0.83 0.77 0.89 0.72 

MAE 15.36 16.23 8.34 14.32 

EXP 
R2 0.82 0.74 0.86 0.71 

MAE 15.74 16.65 8.97 14.66 
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Table S7 Evaluation metrics for the ablation configuration with XRD-derived features removed 

Model Split R2 MAE RMSE 

XGB 

Train 0.448 33.544 42.182 

Test 0.158 37.852 46.509 

10 Fold 0.363 36.254 45.113 

LGBM 

Train 0.457 32.493 41.85 

Test 0.087 39.734 48.418 

10 Fold 0.325 37.246 46.433 

RF 

Train 0.423 34.393 43.135 

Test 0.121 38.951 47.513 

10 Fold 0.345 36.986 45.745 
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Table S8 Comparison between the predictions of the EXP XRD model and new experimental data reported 

in 2025 that are not included in the training dataset. 

Formula 
Catalyst Mass 

Fraction(wt%) 

Heating 

Rate(℃/min) 
Experimental Tp(°C) 

Predicted 

Tp(°C) 
Ref. 

FeMoO@NCN 10 

3 270.1 290.8 

[11] 

5 278.5 298.6 

7 289.4 316.4 

10 295.1 320.5 

NCN 10 

3 335.3 346.9 

5 341.2 352.3 

7 360.5 380.3 

10 369.7 389.9 

Co/C 10 

5 323.2 313.5 

[12] 
8 329.9 321.9 

10 335.3 327.2 

12 341.2 335.7 

Ti2NTx 10 

9 374 383.4 

[13] 
12 382.3 403.7 

15 392.1 407.4 

20 400.1 415.5 

TiO2-C-Ni 8 

5 245 228.2 

[14] 
8 258.5 238 

10 266.8 251 

13 277.7 275.6 

Ni(HCOO)2-300rpm+TPF 10 5 275 296.8 

[15] Ni(HCOO)2-500rpm 10 5 279 260.5 

(NiHCOO)2-300rpm 10 5 312 337.3 

NF 10 10 335.2 342.5 

[16] 

 NF-200 10 10 325.7 354.2 

NF-300 10 10 319.2 322.3 

 NF-400 10 10 327.3 320.5 

 NF-500 10 10 356.8 382.7 

VNbC 5 
5 235 211.6 

[17] 
10 263 243.9 

Ni/NiO@C 10 5 212.8 247.5 [18] 

Ni@SC 5 

5 307.3 285 

[19] 
10 332.7 319.2 

15 347.3 339.4 

20 360.5 350.7 

FeVO4/CNT 6 

5 307.3 314.9 

[20] 10 332.7 348.5 

15 338.8 349.7 

mailto:Ni@SC
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20 342.6 352 

NiO 5 

2 256.9 289.6 

[21] 
5 277.9 315.1 

8 291.7 335.6 

10 302.9 349.8 

CuMoO4 15 

5 351.3 363 

[22] 8 359.8 368.3 

10 367.5 383.8 

TiO2/C/Ni 

3 

10 

307.3 329.7 

[23] 
5 294.8 313 

8 266.8 293.4 

10 257.6 272.9 

Ni&C 10 5 320.5 344.1 [24] 
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Table S9 Promising catalyst candidates for MgH₂ dehydrogenation identified by high-throughput prediction. 

Formula Catalyst Mass Fraction(wt%) Heating Rate(℃/min) Predicted Tp(°C) 

CaFe4O7 10 2 197.0 

NiZr2 10 2 204.4 

Ru10Y10C19 10 2 206.5 

NaFeF3 10 2 215.2 

TbMn6Ge6 10 2 215.3 

Zn2Co3TeO8 10 5 217.0 

Pr2O2SO4 10 2 217.3 

SnS2 5 2 218.9 

K2TiF6 10 2 220.6 

SrZnO2 10 2 220.8 

Bi4(GeO4)3 10 2 222.0 

Nd2Ti4O11 10 2 222.2 

Cu5V2O10 10 2 222.3 
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