

Supporting Information

Rational Design of Interwoven $\text{SiO}_2@\text{Gr/N-CNTs}$ Heterostructures from Fe-C-Si Alloys for Achieving Superior Electromagnetic Wave Absorption

Jingyan Tang ^a, Qingguo Xue ^a, Jingsong Wang ^{a,*}

^a State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China

*Corresponding author.

Email address: wangjingsong@ustb.edu.cn (J.S. Wang)

Electromagnetic absorbing performance calculation

The relative complex permittivity (ε_r) can be calculated as follows:

$$\varepsilon_r = \varepsilon_\infty + \frac{\varepsilon_s - \varepsilon_\infty}{1 + j2f\pi\tau} = \varepsilon' - j\varepsilon'' \quad (\text{S1})$$

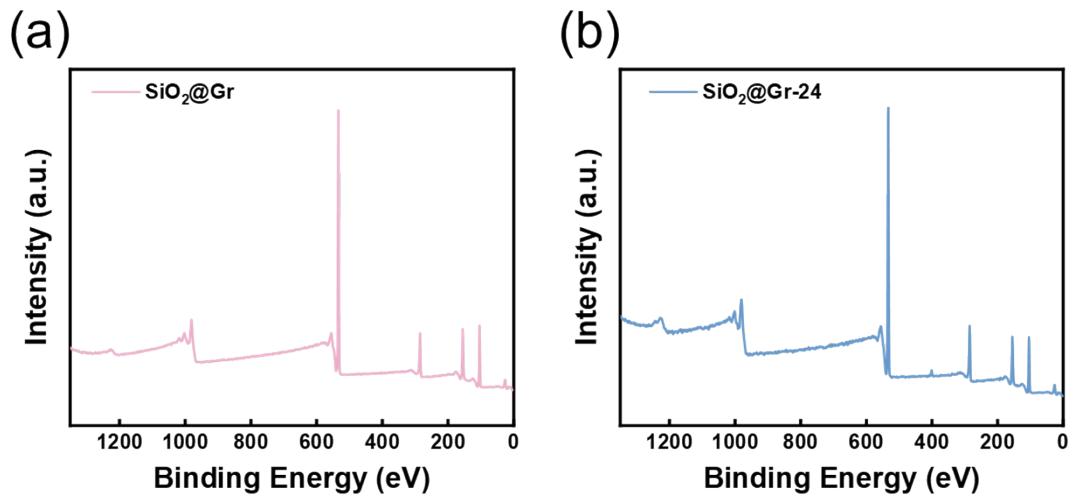
Where ε_r denotes the static permittivity, ε_∞ represents the optical permittivity (relative dielectric permittivity in the high-frequency limit), and τ corresponds to the relaxation time. The complex permittivity ε_r comprises both real and imaginary components, where ε' and ε'' signify the real part and imaginary part of permittivity, respectively. Through separation of the complex permittivity into its real and imaginary components, the following expressions can be derived:

$$\varepsilon' = \varepsilon_\infty + \frac{\varepsilon_s - \varepsilon_\infty}{1 + (2f\pi)^2\tau^2} \quad (\text{S2})$$

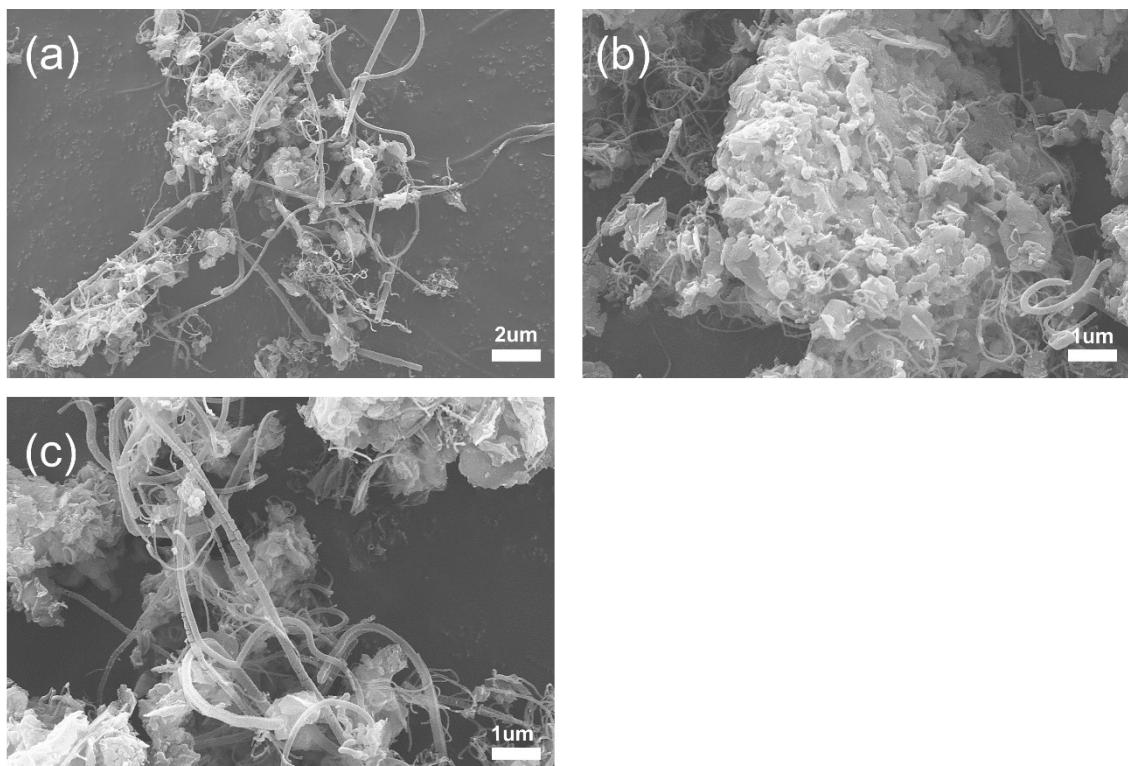
$$\varepsilon'' = \varepsilon_\infty + \frac{2\pi f\tau(\varepsilon_s - \varepsilon_\infty)}{1 + (2f\pi)^2\tau^2} \quad (\text{S3})$$

Based on Equations (S3) and (S4), the expression for $\varepsilon' - \varepsilon''$ can be derived as:

$$(\varepsilon' - \varepsilon'')^2 + (\varepsilon'')^2 = (\varepsilon_r - \varepsilon_\infty)^2 \quad (\text{S4})$$


The attenuation constant (α) can be calculated using Equations (S5):

$$\alpha = \frac{\sqrt{2f\pi}}{c} \times \sqrt{(\varepsilon''\mu' - \varepsilon'\mu'')^2 + \sqrt{(\varepsilon''\mu' - \varepsilon'\mu'')^2 + (\varepsilon'\mu'' + \varepsilon''\mu')^2}} \quad (\text{S5})$$


The impedance matching (Z_{in}/Z_0) can be calculated using Equations (S6):

$$Z_{in} = |Z_{in}/Z_0| = \left| \left(\mu_r/\varepsilon_r \right)^{1/2} \tanh \left[j(2\pi f a/c) \left(\mu_r \varepsilon_r \right)^{1/2} \right] \right| \quad (\text{S6})$$

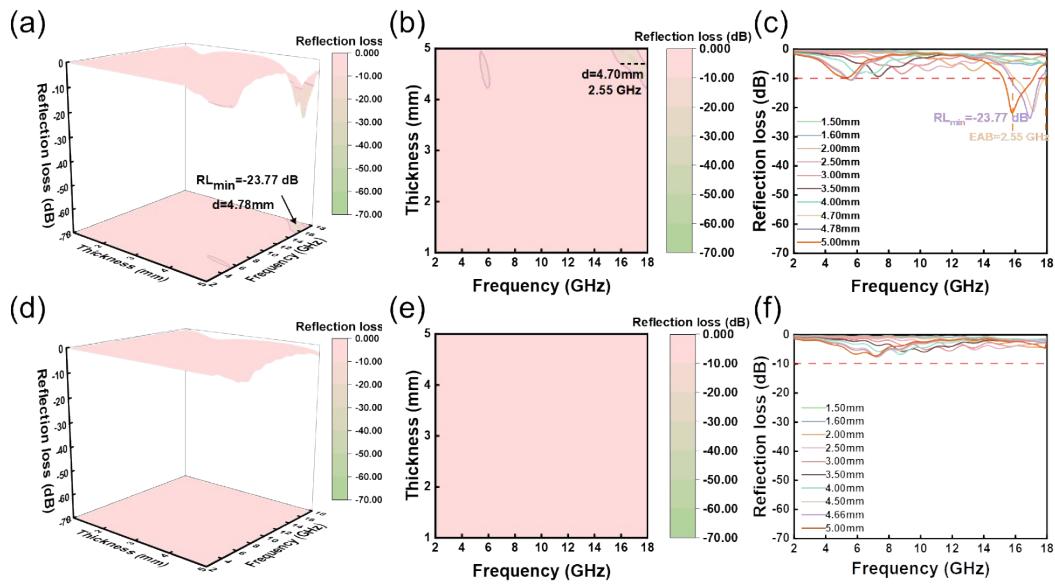


Fig. S1 (a) The XPS full spectrum of $\text{SiO}_2@\text{Gr}$; and (b) the XPS full spectrum of $\text{SiO}_2@\text{Gr-24}$.

Fig.S2 (a)-(c) SEM images of $\text{SiO}_2@\text{Gr}/\text{N-CNTs}$ at different multiples.

Fig.S3 (a)-(c) The 3D and 2D diagrams and RL loss values of $\text{SiO}_2@\text{Gr}$ material. (d)-(f) The 3D and 2D diagrams and RL loss values of $\text{SiO}_2@\text{Gr-24}$ material.

Table S1 Analysis of Fe content in $\text{SiO}_2@\text{Gr}$, $\text{SiO}_2@\text{Gr-24}$, and $\text{SiO}_2@\text{Gr/N-CNTs}$ composite materials by ICP-OES

Samples	Fe (wt%)
$\text{SiO}_2@\text{Gr}$	0.27
$\text{SiO}_2@\text{Gr-24}$	0.31
$\text{SiO}_2@\text{Gr/N-CNTs}$	0.91