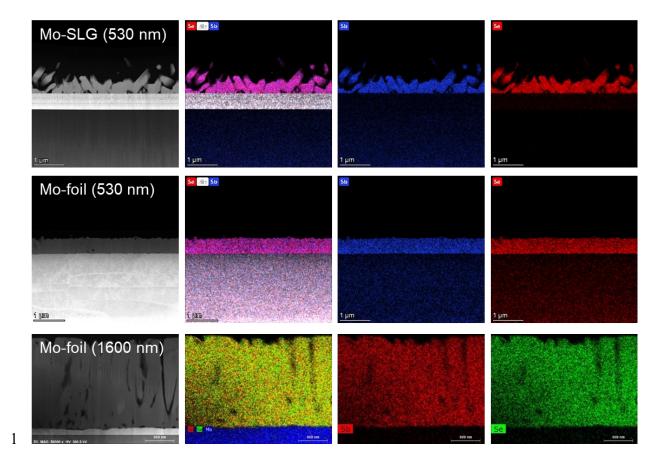
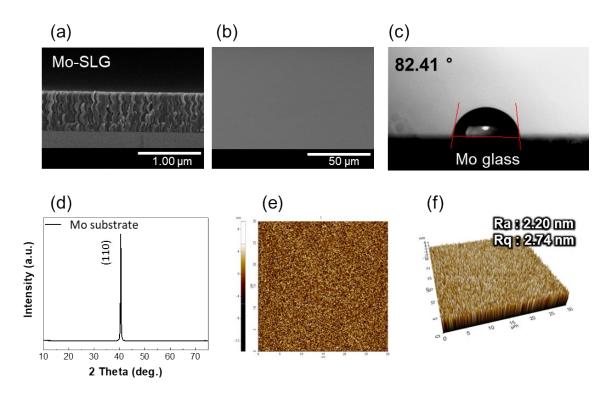
Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

- 1 Supporting Information
- 2 Growth Behavior and Interface Engineering for Photovoltaic
- 3 Applications of Co-evaporated Sb₂Se₃ Thin Films on Mo Foil
- 5 Van-Quy Hoang, a,b,‡ Sinae Park, b,‡ Jaebaek Lee, b Dae-Ho Son, b Dae-Kue Hwang, b Quynh Le-Van, a Vo
- 6 Pham Hoang Huy,^b Se Yun Kim,^d Kee-Jeong Yang,^b Jin-Kyu Kang,^b Shi-Joon Sung,^{b,c,★} and Dae-Hwan
- 7 Kim^{b,c,★}

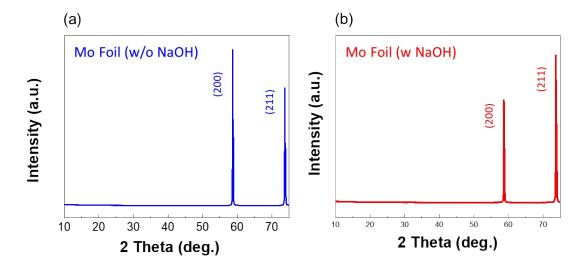

4

14

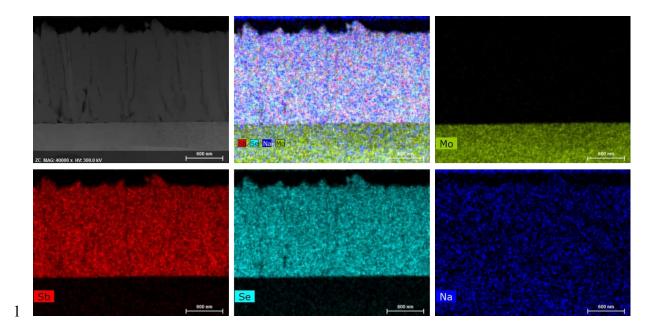
15


- 8 aCenter for Environmental Intelligence, College of Engineering and Computer Science, VinUniversity,
- 9 Gia Lam district, Hanoi 14000, Vietnam
- 10 bDivision of Energy & Environmental Technology, DGIST, Daegu 42988, Republic of Korea
- 11 °Department of Interdisciplinary Engineering, DGIST, Daegu 42988, Republic of Korea
- 12 dDepartment of Advanced Materials Science & Engineering, Kyungnam University, 51767, Korea
- 13 E-mail: sjsung@dgist.ac.kr, monolith@dgist.ac.kr

- 16 †Electronic supplementary information (ESI) available. See DOI: https://doi.org/xxx
- 17 [‡]These authors contributed equally to this work.
- 19 **Keywords**: Sb₂Se₃ thin film, flexible photovoltaics, Mo foil, columnar grain growth


 $2 \quad \textbf{Figure S1}. \ \mathsf{STEM} \ \mathsf{EDS} \ \mathsf{images} \ \mathsf{of} \ \mathsf{Sb}_2\mathsf{Se}_3 \ \mathsf{thin} \ \mathsf{films} \ \mathsf{on} \ \mathsf{Mo} \ \mathsf{or} \ \mathsf{Mo}\text{-foil}. \ \mathsf{For} \ \mathsf{each} \ \mathsf{sample}, \ \mathsf{images} \ \mathsf{from}$

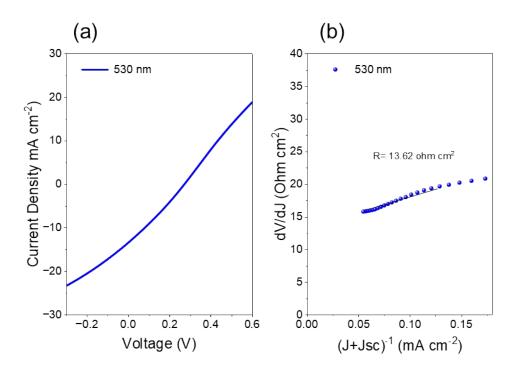
- $3\,$ left to right show the cross-sectional STEM image, composite EDX elemental map, and individual
- 4 elemental maps of Sb and Se.


Figure S2. (a) Cross-sectional and (b) top-view SEM images of the Mo-SLG substrate, along with (c) 3 the water contact angle measurement of the Mo-coated glass. (d) XRD and (e) AFM topography and

(f) three-dimensional surface profile images, indicating a smooth Mo surface with low roughness.


2 Figure S3. XRD data of Mo-foil substrates (a) without NaOH treatment (w/o NaOH) and (b) with NaOH

3 treatment (w NaOH)


2 Figure S4. TEM-EDS images of 1600 nm-thick Sb₂Se₃ films on Mo-foil with NaOH treatment showing

- 3 the cross-sectional STEM image, composite EDX elemental map, and individual elemental maps of Mo,
- 4 Sb, Se and Na.



2 Figure S5. Top-view and cross-sectional SEM images of Sb_2Se_3 on $MoSe_2$ interlayer and NaOH

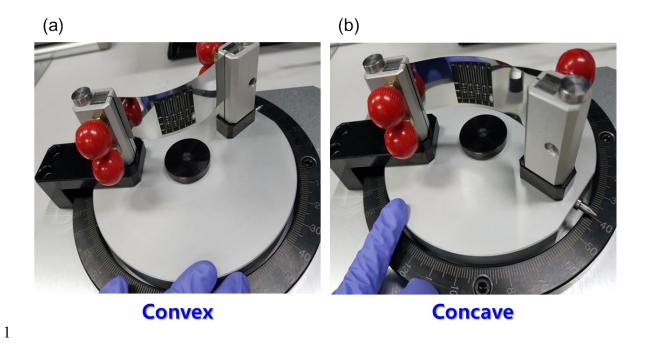

3 treatment with different thickness from 873 nm to 1400 nm.

Figure S6. Characteristic behavior of the best-performing devices inclusing (a) *J*–V curves, derivative of dJ/dV for shunt characteristic analysis of 530 nm-thick Sb₂Se₃ based device.

Figure S7. Characteristic behavior of the best-performing devices inclusing (a) *J*–V curves, (b) 3 derivative of dJ/dV for shunt characteristic analysis, (c) derivatives of dV/dJ under forward bias with 4 fitting are used to determine the series resistance and diode ideality factor and (d) In(J + JSC - GV) versus (V - RJ)) curves of 1600 nm-thick Sb₂Se₃ based device.

Figure S8. Experimental setups for convex (stretching) and concave (compressing) bending tests.

 $1 \quad \textbf{Table S1.} \quad \text{Voc, } \textit{J}_{\text{SC}}, \; \text{FF, PCE, } \; \text{R}_{\text{s}} \; \text{and} \; \; \text{R}_{\text{sh}} \; \text{of the flexible Sb}_{2}\text{Se}_{3} \; \text{solar cells without and with NaOH}$

2 treatment.

Treatment	V _{OC}	$J_{ m SC}$	FF	PCE	$R_{\rm s}$	$R_{\rm sh}$
	(V)	(mA/cm ²)	(%)	(%)	(Ωcm^2)	(Ωcm^2)
w/o NaOH	0.349	19.00	44.40	2.94	6.30	100.16
w NaOH	0.341	20.27	46.65	3.23	5.60	110.75