Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Photoinduced metastable-charging d-orbital electrons of Re centers

enhances interfacial charge migration behaviors for efficient

coupling conversion

Xiang Lia, Guiyang Yua,*, Ruihong Suna, Ke Gongb, Jinghao Zhua, Debao Wanga

^a Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science

(MOE), College of Chemistry and Molecular Engineering, Qingdao University of

Science and Technology, Qingdao, 266042, PR China.

^b School of Materials Science and Engineering, Ocean University of China, Qingdao

1

266100, China

Corresponding Email: yugy3413@qust.edu.cn

Contents

1. Experimental Section

- 1.1 Preparation of ZnIn₂S₄ (ZIS)
- 1.2 Material Characterization
- 1.3 Photoelectrochemical measurements
- 1.4 Density-functional-theory (DFT) calculations
- 1.5 Calculation of Fermi level from UPS spectra
- 1.6 Calculation formula for $k_{\rm IR}$ and $\eta_{\rm int}$

2. Characterization data

- Fig. S1. XRD patterns of ZIS and various ReS₂/ZIS samples.
- Fig. S2. N₂ absorption-desorption isotherms of ZIS and ReS₂/ZIS samples.
- Fig. S3. (a and b) TEM images and (c) HRTEM image of pure ReS₂.
- **Fig. S4.** (a-c) SEM images, (d and e) TEM images, (f) SAED image, (g) element mapping image for Zn, In, and S elements, (h) EDX image of ZnIn₂S₄ sample.
- **Fig. S5.** EDX mapping images for Zn, In, Re, and S elements of 10% ReS₂/ZIS sample.
- Fig. S6. EPR spectra of pristine ZIS.
- **Fig. S7.** (a) XPS survey spectra and (b) Zn 2p XPS spectra of ZIS and 10% ReS₂/ZIS samples.
- **Fig. S8.** Structural model for ReS₂/ZIS and the Bader charge transfer number of neighboring atoms.
- Fig. S9. Standard curves of (a) benzylamine, (b) N-benzylidenebenzylamine and (c)

benzaldehyde by HPLC analysis.

Fig. S10. HPLC analysis of (a) standard products and (b) intermediate products in the preliminary reduction process of oxidative coupling reaction of benzylamine.

Fig. S11. (a) Photocatalytic oxidative coupling of benzylamine and (b) bar chart of conversion rate for 6 h over ZIS, 10% ReS₂/ZIS and 10% ReS₂/ZIS-Mix samples.

Fig. S12. XRD patterns of 10% ReS₂/ZIS sample before and after reaction.

Fig. S13. (a) Re 4f, (b) In 3d, and (c) Zn 2p XPS spectra of 10% ReS₂/ZIS sample before and after reaction.

Fig. S14. (a) Photocatalytic oxidative coupling of various benzylamine derivatives benzylamine and (b) bar chart of conversion rate for 6 h over 10% ReS₂/ZIS sample. **Fig. S15.** The cyclic voltammogram of benzylamine.

Fig. S16. EPR spectra of ZIS and 10%ReS₂/ZIS samples in the presence of DMPO under benzylamine-acetonitrile reaction solution.

Fig. S17. ¹H NMR of intermediate products in the reaction process of photocatalytic oxidative coupling of amines.

Fig. S18. UV-vis absorption spectra of reaction system (benzylamine oxidation) with or without 10%ReS₂/ZIS photocatalyst after adding DPD and POD.

Table S1. The element content of ZIS and ReS₂/ZIS according to ICP result.

Table S2. Fitting parameters of Re 4f XPS spectra for Ar⁺-etched ReS₂/ZIS sample before and after light illustration.

Table S3. The measured conductivity (σ) , carrier mobility (μ) , carrier concentration (c), and I/V using electrochemical characterization.

Table S4. Time constant τ of fluorescence decay curves of ZIS, 10% ReS $_2$ /ZIS-Mix and 10% ReS $_2$ /ZIS.

 Table S5. Black experiments without catalyst nor light irradiation.

Table S6. Summary of photocatalysts reported for benzylamine oxidation.

3. Reference

1. Experimental Section

1.1 Preparation of ZnIn₂S₄ (ZIS)

Typically, 136 mg of ZnCl₂, 586 mg of InCl₃·4H₂O, and 751 mg of thioacetamide (TAA) were dissolved by sonication in 30 mL deionized water and stirred for one hour. Then the mixture was transferred into a 50 mL Teflon-lined stainless-steel autoclave and heated to 180 °C for 12 h. After nature cooling, the ZnIn₂S₄ product was collected by centrifugation and subsequently washed by deionized water and ethanol for three times, and finally vacuum-dried at 60 °C.

1.2 Material Characterization

The crystallite property was examined using the X-ray diffraction (XRD) characterization containing a Rigaku X-ray diffractometer of Cu K α radiation (λ =1.5418 Å, 50 kV, 200 mA). The scanning rate is 10 °/min from 10° to 70°. The morphology and holey property were investigated using JEOL JSM-6700F field-emission scanning electronic microscope (SEM) and JEM 2100 transmission electron microscopy (TEM) with the accelerating voltage of 10 kV and 200 kV, respectively. Hitachi UV-3900 spectrophotometer was used to analyze the UV-vis diffused reflectance spectra (DRS) of the samples, in which BaSO₄ acts as blank reference. The surface areas and pore distribution were determined by N₂ adsorption/desorption isotherms and Brunauer-Emmett-Teller (BET) method. The sample was heated to 150 °C maintaining 5 h in order to evacuate any moisture and solvent molecules inner the pore. The elemental analysis was carried out on an inductively coupled plasma mass spectrometry (ICP-MS, PerkinElmer, ELAN9000).

1.3 Photoelectrochemical measurements

The transient photocurrent responses, and electrochemical impedance spectroscopy (EIS) were investigated on a CHI760D electrochemical workstation (Shanghai Chenhua Instrument Corp., China) in a conventional three-electrode system composed of a Pt sheet counter electrode, a saturated Ag/AgCl as reference electrode and a working electrode. Firstly, the working electrode was fabricated by spin-coating ethanol suspensions onto pre-cleaned FTO glass (1×1 cm⁻²) surface. Typically, 5 mg sample was dispersed evenly in 2 mL ethanol with 10 μL Nafion solution, followed by ultrasonic treatment for 1 h to form homogeneous solution. The above solution was dipped (40 μL) and spin-coated (200 r·min⁻¹, 10 s) onto the pre-cleaned FTO conductive glass surface, and then dried at room temperature. The above coating process was repeated ten times. Moreover, 0.5 M Na₂SO₄ aqueous solution was used as supporting electrolyte. A 300 W Xe lamp equipped with a 420 nm optical cutoff filter was used at light source.

1.4 Density-functional-theory (DFT) calculations

All calculations are performed with the Vienna Ab-initio Simulation Package (VASP) in the framework of density functional theory (DFT).^{1,2} The projector augmented wave (PAW) method ^{3,4} is used to describe the electrons-ionic interactions and the generalized gradient approximation (GGA) together with the Perdew-Burke-Ernzerhof (PBE)⁵ is employed to describe all exchange and correlation effects. Grimmes's dispersion correction D3 is used to account for the vdW interaction.^{6,7} A cutoff energy of 400 eV is used to ensure the precision of calculations. Brillouin zone

is sampled using the Monkhorst–Pack by a $6\times6\times1$ k-point grid for $ZnIn_2S_4$ semiconductor and $5\times5\times1$ k-point mesh was used for one-layer ReS_2 . Gaussian smearing with a width of 50 meV was used for the occupation of electronic levels. To simulate the $ReS_2/ZnIn_2S_4$ composites, ReS_2 were put on a (2×2) stoichiometric $ZnIn_2S_4$ surface slab. Convergence criteria are set to be 10^{-5} eV for energy and 0.03 eV/Å for the forces and the interaction between adjacent layers was prevented by setting up a 1.5 nm vacuum layer. To get the exact DOS results, we increased the number of k-point and use $9\times9\times1$ k-point grid.

1.5 Calculation of Fermi level from UPS spectra

In the UPS spectra, it is well known that the position of vacuum level ($E_{\rm vac}$) is located 21.22 eV above the cutoff energy ($E_{\rm cutoff}$) of the spectrum. Using ZIS as example, Fig. 3a shows the $E_{\rm cutoff}$ of ZIS is 17.58 eV. Hence the $E_{\rm f}$ is calculated to be -3.64 eV based on the formula of $E_{\rm cutoff}$ 21.22 (vs. vacuum). According to the difference between vacuum energy level and NHE level, the $E_{\rm f}$ of ZIS is determined to be -0.86 V (-4.5–(-3.64)= -0.86 V) (vs. NHE).

1.6 Calculation formula for $k_{\rm IR}$ and $\eta_{\rm int}$

Based on the average lifetime of ZIS, ReS₂/ZIS, and ReS₂/ZIS-Mix, the injection rate is determined by the following formula⁸:

$$k_{IR} = \frac{1}{\tau_{\text{ave}} (\text{ReS}_2/\text{ZIS})} - \frac{1}{\tau_{\text{ave}} (\text{ZIS})}$$

$$k_{IR} = \frac{1}{\tau_{\text{ave}} (\text{ReS}_2/\text{ZCS - Mix})} - \frac{1}{\tau_{\text{ave}} (\text{ZIS})}$$
[1]

The efficiency of electron injection (η_{int}) into ReS₂, as a more important parameter

for activity, is acquired as⁹:

$$\eta_{\text{inj}} = 1 - \frac{\tau_{\text{ave}}(\text{ReS}_2/\text{ZIS})}{\tau_{\text{ave}}(\text{ZIS})}$$

$$\eta_{\text{inj}} = 1 - \frac{\tau_{\text{ave}}(\text{ReS}_2/\text{ZCS - Mix})}{\tau_{\text{ave}}(\text{ZIS})}$$
[3]

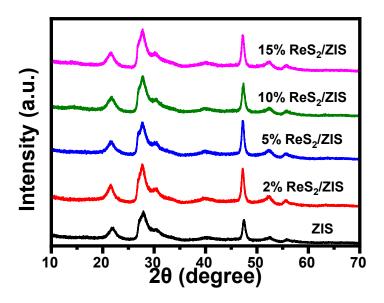


Fig. S1. XRD patterns of ZIS and various ReS₂/ZIS samples.

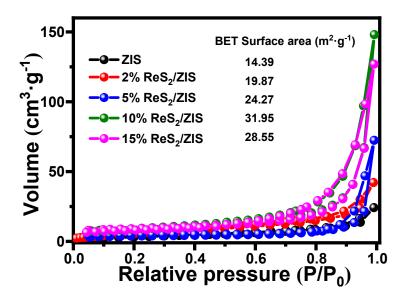


Fig. S2. N₂ absorption-desorption isotherms of ZIS and ReS₂/ZIS samples.

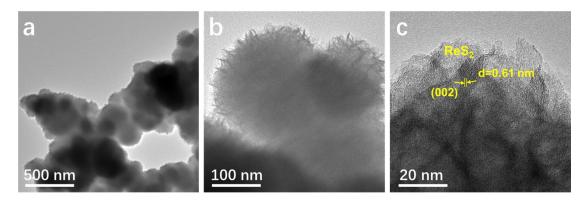
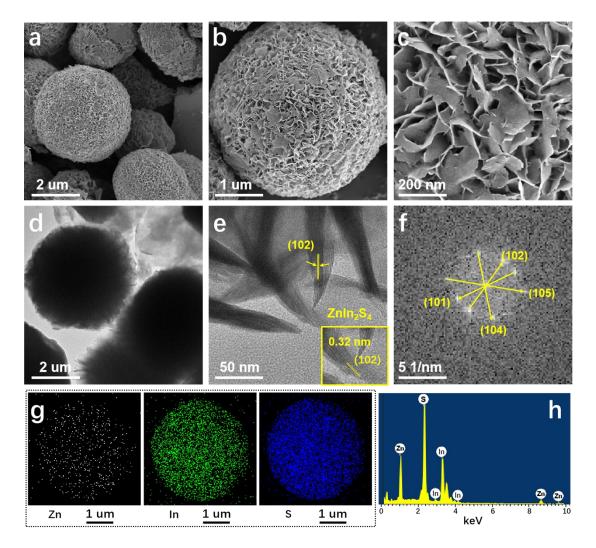



Fig. S3. (a and b) TEM images and (c) HRTEM image of pure ReS_2 .

Fig. S4. (a-c) SEM images, (d and e) TEM images, (f) SAED image, (g) element mapping image for Zn, In, and S elements, (h) EDX image of ZnIn₂S₄ sample.

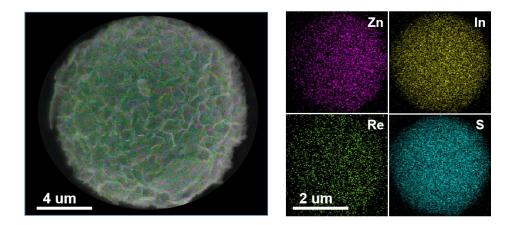


Fig. S5. EDX mapping images for Zn, In, Re, and S elements of 10% ReS $_2$ /ZIS sample.

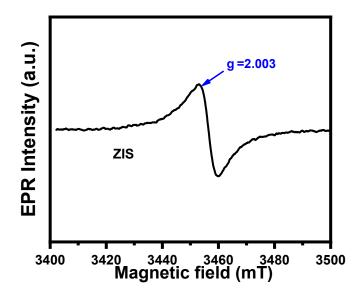
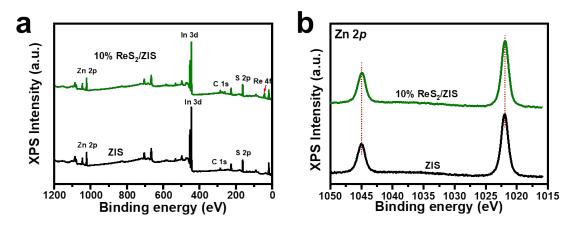
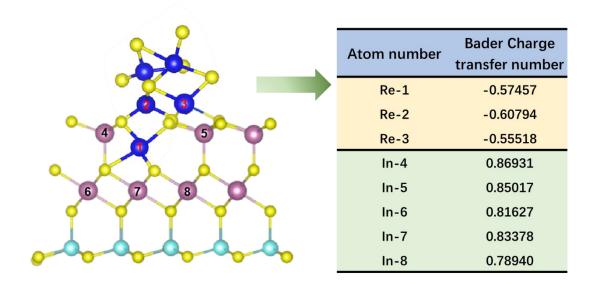
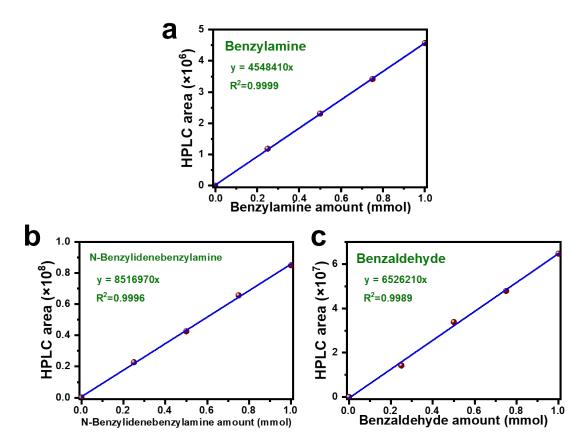
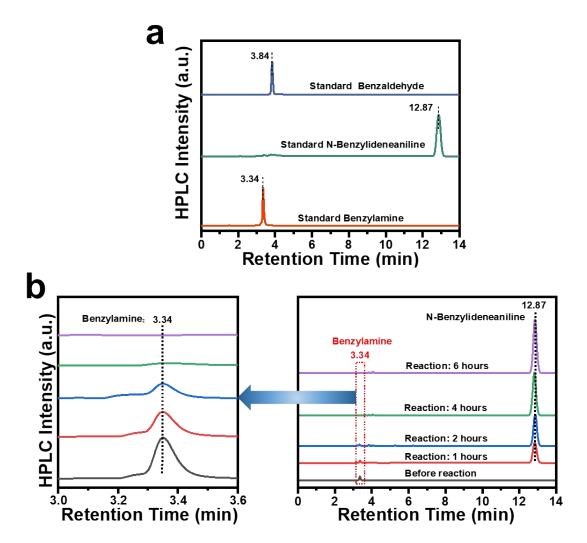



Fig. S6. EPR spectra of pristine ZIS.

Fig. S7. (a) XPS survey spectra and (b) Zn 2p XPS spectra of ZIS and 10% ReS₂/ZIS samples.

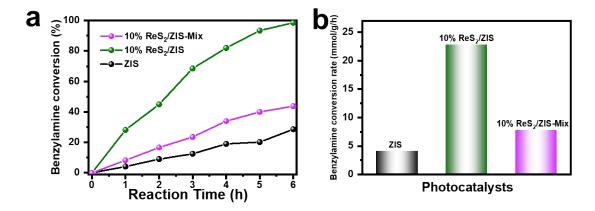

Fig. S8. Structural model for ReS_2/ZIS and the Bader charge transfer number of neighboring atoms.

Fig. S9. Standard curves of (a) benzylamine, (b) N-benzylidenebenzylamine and (c) benzaldehyde by HPLC analysis.

Fig. S10. HPLC analysis of (a) standard products and (b) intermediate products in the preliminary reduction process of oxidative coupling reaction of benzylamine.

Fig. S11. (a) Photocatalytic oxidative coupling of benzylamine and (b) bar chart of conversion rate for 6 h over ZIS, 10% ReS₂/ZIS and 10% ReS₂/ZIS-Mix samples.

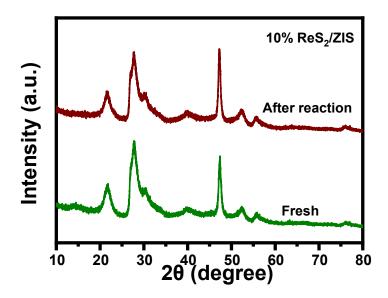
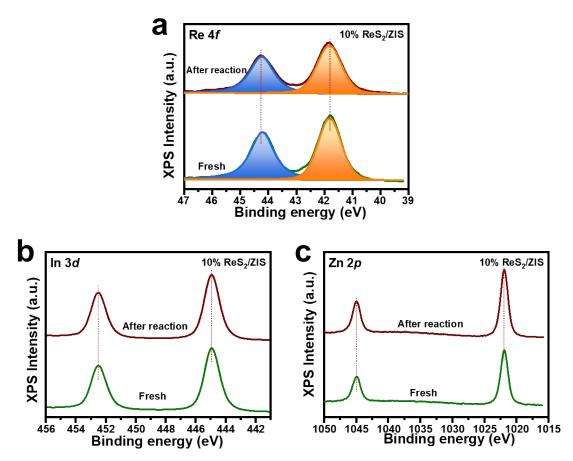
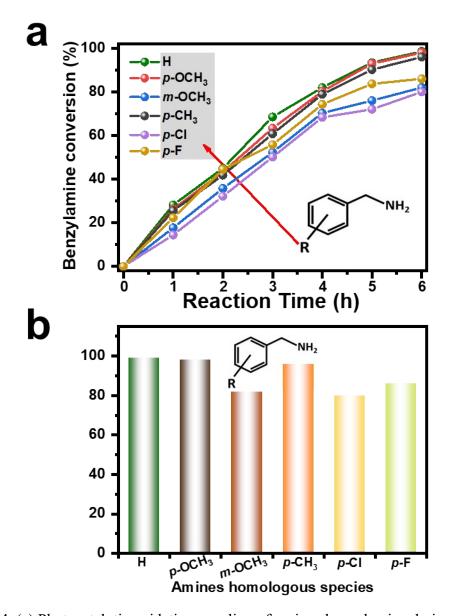
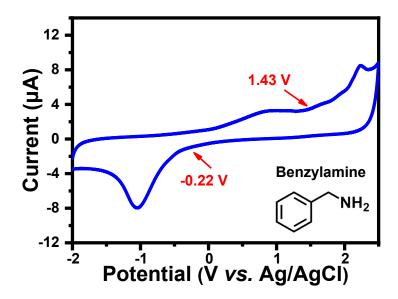
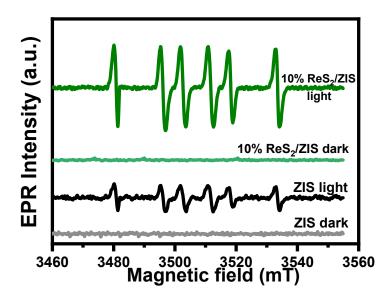
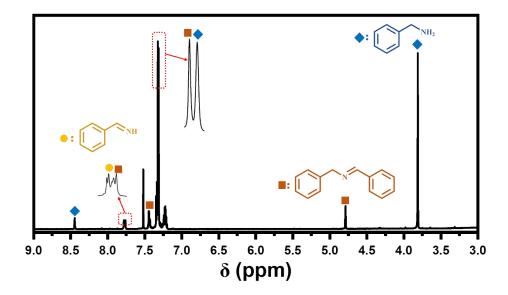




Fig. S12. XRD patterns of 10% ReS₂/ZIS sample before and after reaction.

Fig. S13. (a) Re 4f, (b) In 3d, and (c) Zn 2p XPS spectra of 10% ReS₂/ZIS sample before and after reaction.

Fig. S14. (a) Photocatalytic oxidative coupling of various benzylamine derivatives benzylamine and (b) bar chart of conversion rate for 6 h over 10% ReS₂/ZIS sample.

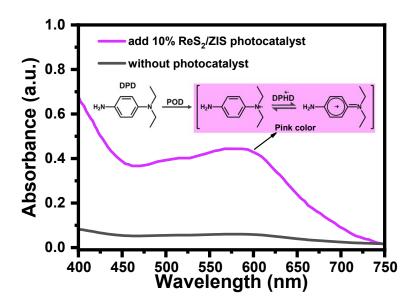

Fig. S15. The cyclic voltammogram of benzylamine.

Fig. S16. EPR spectra of ZIS and 10%ReS₂/ZIS samples in the presence of DMPO under benzylamine-acetonitrile reaction solution.

Fig. S17. ¹H NMR of intermediate products in the reaction process of photocatalytic oxidative coupling of amines.

Fig. S18. UV-vis absorption spectra of reaction system (benzylamine oxidation) with or without 10%ReS₂/ZIS photocatalyst after adding DPD and POD.

Table S1. The element content of ZIS and ReS_2/ZIS according to ICP result.

Sample	Zn (wt%)	In (wt%)	Re (wt%)
ZIS	15.4619	53.9258	
2% ReS ₂ /ZIS	15.1601	53.2708	1.4437
5% ReS ₂ /ZIS	14.7148	51.6637	3.5872
10% ReS ₂ /ZIS	13.9619	49.0202	7.2112
15% ReS ₂ /ZIS	13.3157	46.7513	10.3226

Table S2. Fitting parameters of Re 4f XPS spectra for Ar^+ -etched ReS_2/ZIS sample before and after light illustration.

Candition	Fitting novemeter	Re ⁴⁺ species		Re ^{(4-δ)+} species		
Condition	Fitting parameter	Peak I	Peak II	Peak III	Peak IV	
	Peak position (eV)	44.22	41.61	43.63	41.21	
Ar ⁺ -etched	FWHM	1	1	1.22	0.92	
ReS ₂ /ZIS before light illumination	Peak area	1388	1505	1013	883	
	Area percentage	28.98	31.43	21.15	18.44	
	(%)	60.41		39.59		
	Peak position (eV)	44.22	41.61	43.73	41.23	
Ar*-etched ReS2/ZIS after light illumination	FWHM	1	1	1.22	0.92	
	Peak area	1150	1441	1439	820	
	Area percentage	23.71	29.71	29.67	16.91	
	(%)	53.42		46.58		

Table S3. The measured conductivity (σ) , carrier mobility (μ) , carrier concentration (c), and I/V using electrochemical characterization.

Sample	I/V (µA/V)	σ (S·m ⁻¹)	c (cm ⁻³)	μ (cm ² ·V ⁻¹ ·s ⁻¹) ¹
ZIS	0.181	0.006	3.18×10^{15}	0.117
10% ReS ₂ /ZIS-Mix	0.697	0.023	4.18×10^{15}	0.343
10% ReS ₂ /ZIS	2.106	0.069	5.96×10^{15}	0.726

^{1.} The carrier mobility (μ) of ZIS, 10% ReS₂/ZIS-Mix and 10% ReS₂/ZIS samples is calculated according to the following equations:¹⁰

$$\sigma = \frac{dI}{(2n-1)LhV}$$
 [5]
$$\sigma = cq\mu$$
 [6]

Where d is the interelectrode spacing (75 µm), I is the current, n is the number of electrode digits (the interdigitated array electrode in our measurement is composed of n=10 pairs of ITO electrode digits deposited onto a glass substrate), L is the overlapping length of the electrodes (6000 µm), h is the film thickness (20 nm), c is the charge carrier concentration, and q stands for elementary charge (1.6×10⁻¹⁹ C).

Table S4. Time constant τ of fluorescence decay curves of ZIS, 10% ReS₂/ZIS-Mix and 10% ReS₂/ZIS.

Samples	τ ₁ (ns)	A ₁ %	τ_2 (ns)	A ₂ %	τ ₃ (ns)	A ₃ %	τ _{ave} (ns)
ZIS	0.8312	18.11	4.5452	45.83	40.0107	36.06	35.2227
10% ReS ₂ /ZIS-Mix	0.7927	36.95	3.8388	38.51	38.9262	24.54	33.3591
10% ReS ₂ /ZIS	0.7576	51.52	2.8399	32.67	29.8186	15.81	23.7889

Table S5. Black experiments without catalyst nor light irradiation.^a

Enter	Dhoto octolyst	Irradiation Benzylamine		Imine yield	
Entry	Photocatalyst	condition	conversion (%)	(%)	
1	10% ReS ₂ /ZIS	/	/	/	
2	/	≥420 nm	/	/	

^a Reaction conditions: photocatalyst (10 mg), substrate (1 mmol), solvent 10 mL acetonitrile, room temperature, Xenon lamp ($\lambda \ge 420$ nm).

Table S6. Summary of photocatalysts reported for benzylamine oxidation.

Catalyst	Benzylamine amount (mmol)	Reaction time (h)	Solvent	TOFa	Reference
1%Pt/TiO ₂ -500 (50 mg)	1.074	12	H ₂ O+acetonitrile	0.974	Catal. Sci. Technol., 2019, 9, 5803
Polyhedral SrTiO ₃ (4 mg)	0.4	16	acetonitrile	6.25	J. Mater. Chem. A, 2023, 11, 22198
COF-Sr2Fe1 (5 mg)	1.5	1.5	acetonitrile	19.4	J. Colloid Interface Sci. 2024, 655, 611
4-NA-Cu ₂ O (3 mg)	1	18	acetonitrile	18.2	ACS Catal. 2023, 13, 1474.
Titanium-Porphyrinic Aerogels (5 mg)	1	10	acetonitrile	20.00	Angew. Chem. Int. Ed., 2020, 59, 21591
$Bi_{24}O_{31}Br_{10}$ (20 mg)	0.2	12	H_2O	0.82	ChemSusChem, 2020, 13, 116
GICN (10 mg)	0.2	8	acetonitrile	2.33	Appl. Catal. B: Environ, 2020, 278, 119342
g-C ₃ N ₄ /BiOBr (100 mg)	0.125	4	acetonitrile	0.29	Chem. Eng. J., 2020, 394, 124934
Conjugated polyimide (50 mg)	0.1	6	acetonitrile	0.30	Appl. Catal. B: Environ, 2020, 272, 118964
CdS@C ₃ N ₄ (5 mg)	0.3	4	acetonitrile	12.55	Appl. Catal. B: Environ, 2018, 236, 176
20% PDI/mpgCN (8 mg)	1	6	acetonitrile	20.63	Appl. Catal. B: Environ, 2021 , 298, 120534.
10% ReS ₂ /ZIS (10 mg)	1	6	acetonitrile	22.84	This work

^a TOF: mmol of amine converted per gram of photocatalyst per hour.

References

- 1. G. Kresse, J. Non-Cryst. Solids, 1995, 192-193, 222-229.
- 2. G. Kresse and J. Furthmuller, *Phys. Rev. B Condens. Matter.*, 1996, **54**, 11169-11186.
- 3. P. E. Blochl, Phys. Rev. B Condens. Matter., 1994, **50**, 17953-17979.
- 4. G. Kresse and D. Joubert, *Phys. Rev. B*, 1999, **59**, 1758-1775.
- 5. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865-3868.
- 6. S. Grimme, S. Ehrlich and L. Goerigk, *J. Comput. Chem.*, 2011, **32**, 1456-1465.
- 7. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, *J. Chem. Phys.*, 2010, **132**, 154104.
- 8. M. Abdellah, K. Žídek, K. Zheng, P. Chábera, M.E. Messing and T. Pullerits, *J. Phys. Chem. Lett.*, 2013, **4**, 1760-1765.
- 9. X. Shi, M. Fujitsuka, S. Kim and T. Majima, *Small*, 2018, **14**, e1703277.
- G. Yu, K. Gong, C. Xing, L. Hu, H. Huang, L. Gao, D. Wang and X. Li, *Chem. Eng. J.*, 2023, 461, 142140.