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1. Experimental:

1.1 Chemicals

For this research work, nickel nitrate hexahydrate (Ni(NOs),.6H,O), ammonium cerium (IV)
nitrate ((NHy),[Ce(NOs)s]), N-methyl-2-pyrrolidone (NMP), and potassium hydroxide (KOH)
were procured from Sigma-Aldrich (South Korea). Carbon black and polyvinylidene fluoride
(PVDF) were purchased from Alfa-Aesar (South Korea), while ethanol (99.8%) and acetone
(99.8%) were procured from Daejung Chemicals & Metals (South Korea). For the synthesis, all
the chemicals and solvents were used without further purification. For the substrate, nickel foams

(NFs) (purity > 99.9%) with 2 mm thickness were obtained from MTI South Korea.

1.2 In-situ deposition of CeO, on NFs

The NFs were subjected to activation by treating with 10% hydrochloric acid (HCI). The NFs were
cut to the dimension of 1x2.5 cm and immersed in 10% hydrochloric acid (HCI) for a period of 15
min. Then HCI was drained, and the NFs were washed continuously with deionized (DI) water
(18.3 MQ cm) until obtaining a neutral pH (~7), followed by rinsing with ethanol and drying at
65°C in a vacuum overnight. The NFs with pretreatment as described above were used for the
deposition of CeO,. For the in-situ deposition of CeO, on NFs, firstly the NFs were masked with
Teflon tape with an exposed area of 1x1 cm, which will be the active area. The NFs with masking
were attached to the glass slides with the help of Kapton tape. In a beaker containing 50 mL of DI
water, 219.29 mg of (NH4),[Ce(NOs)s] was dissolved to have a 8 mM solution of
(NH4),[Ce(NOs3)e] and poured into the Teflon liner. The masked NFs attached to the glass slides
are lowered down into the Teflon liner and placed vertically. The Teflon liner was covered, and

this setup was kept inside the stainless steel container of the hydrothermal unit, and the



hydrothermal reaction was carried out at 120°C for a period of 8 h. After the completion of the
reaction, the reaction mixture in the autoclave was cooled to room temperature. The CeO,-
deposited NFs were detached from the glass slides and rinsed with DI water and ethanol, followed
by drying at 65 °C for 15 h in a vacuum. The obtained sample was labeled as NF/C for the

simplicity of identification.

1.3 In-situ growth of CeO,/NiOOH/Ni(OH), heterostructure

For the in-situ deposition of the CeO,/NiOOH/Ni(OH), heterostructure on NFs, the hydrothermal
method was carried out in the following manner. This was carried out using (NHy4),[Ce(NOs3)¢] and
Ni(NO;),-6H,0 as the sources of Ce and Ni, respectively, and the molar ratio was varied, such as
1.0:1.0 (8 mM:8 mM), 1.0:2.0 (8 mM:16 mM), and 1.0:3.0 (§ mM:24 mM), to obtain different
compositions. The molar concentrations of the reagents were calculated for 50 mL, and for the
ease of experimenting, the reagents ((NHj), [Ce(NOs)g] and Ni(NO3),-6H,0) were dissolved
separately in two beakers containing 25 mL of DI water. Then Ni(NOs3),-6H,0 solution was added
slowly in drops to (NHy), [Ce(NOs)e] solution and stirred for 25 min to form a uniform growth
solution. The growth solution obtained was poured into the Teflon liner, and the masked NFs
attached to the glass slides were dropped into it. The Teflon liner was closed and placed in the

stainless steel container, and the hydrothermal reaction was carried out for 8 h at 120°C. The

hydrothermal was carried out under identical conditions (8 h at 120°C) for different concentration
ratios, namely 1:1, 1:2, and 1:3, and labeled as NF/CN-1, NF/CN-2, and NF/CN-3 for easy

recognition.

1.4 Structural and Morphological Analysis



The prepared electrodes (NF/C, NF/CN-1, NF/CN-2, and NF/CN-3) were analyzed for their
structural properties with the help of X-ray diffraction (XRD, D/max-2400, Rigaku, Ultima IV
operated at 40 kV and 30 mA). In addition, X-ray photoelectron spectroscopy (XPS) (NOVA, Axis
Technology), operated under Al Ka radiation with the internal standard of the C 1s peak fixed at
284.6 eV, was used to perform XPS and UPS (Ultraviolet Photoelectron Spectroscopy) analysis.
Electron paramagnetic resonance spectroscopy (EPRS) was performed using the JES-X3 Series
A-System at 293 K. The surface morphology of the electrodes was examined and recorded using
scanning electron microscopy (SEM, JEOL, JSM-6700F), and the in-depth analysis of the
morphology of the electrode materials and selected-area electron diffraction (SAED) patterns was
carried out using high-resolution transmission electron microscopy (HRTEM) (JEOL JEM-3010,
Japan) operated at an acceleration of 200 kV. The presence of the constituent elements was

recorded using energy-dispersive X-ray (EDX) elemental mapping and EDX spectra.

1.5 Electrochemical characterization

The electrochemical profiles of all the prepared electrodes (NF/C, NF/CN-1, NF/CN-2, and
NF/CN-3) were examined using a VSP Biopotentiostat/galvanostat electrochemical workstation
(BioLogic-SP-150e-France) at RT (~2°C). The electrochemical features of the electrodes were
analyzed in terms of cyclic voltammetry (CV) at various sweep rates, galvanostatic charge
discharge (GCD) at different current densities, and electrochemical impedance spectroscopy (EIS)
for the frequency range between 10 mHz and 100 kHz under a sinus amplitude of 10 mV with 0
V bias voltage. For all the electrochemical measurements, a freshly prepared 3 M KOH aqueous

solution was used as the electrolyte.

1.6 Fabrications of asymmetric hybrid capacitor (AHC)



With the conclusion drawn from the electrochemical analysis, the NF/CN-2 electrode was
considered the best-performing electrode, and therefore it was treated as the positrode for
assembling the AHC. For the negatrode, porous carbon nanosheet (PC), prepared as per a
published work with some modifications !, was chosen. Since the NF/CN-2 electrode was binder-
free, only the negatrode was coated using the prepared slurry. For the preparation of slurry, 75%
of active material (PCN), 20% of conductive material (carbon black), and 5% of binder (PVDF)
were ground to have a uniform mixture, to which NMP was added while grinding until achieving
a consistent slurry. The prepared slurry was applied to pretreated NFs of 1x1 cm active area with
a brush and dried in a vacuum overnight. For the assembly of AHC, both the positrode (NF/CN-2)
and negatrode (NF/PC) were kept face-to-face with a Whatman filter paper 42 sandwiched in
between them to serve as the spacer. This composition was wetted with 3 M KOH, transferred to
a coin cell setup, and pressed using a hydraulic coin cell-crimping machine. The fabricated AHC

assembly was used for all the electrochemical examinations.

2. Equations:

Using the information from the GCD curves of all the electrodes under the three-electrode system,
the areal capacity (C,) (mC cm™) of the electrodes can be obtained from the following equation.

I X At
C,=
a (S1)

Here, I stands for the discharge current (mA), At represents the discharge time (s), and « is the
active area of the electrode (cm?).
In addition, the specific capacity (C;) (A g!) of each electrode can be calculated by considering

the mass of the electrode material using the following equation.



I X At
C,=
m (52)

Here, I denotes the discharge current (mA), At is the discharge time (s), and m represents the mass
of the active electrode material deposited on the electrode (mg).
The specific capacitance (Cy,) (F g') of the electrodes can be calculated from the following

equation.

_IxAt
SPAV Xm (S3)

Where I denotes the discharge current (mA), At stands for the discharge time (s), while AV
represents the potential window (V), and m is the mass of the active electrode material deposited
on the electrode (mg).

The reaction kinetics of the participating electrodes can be obtained by calculating the value of the

variable b using the following equation.

i=ar’ (S4)
logi=loga+ blogv (S5)

In the above equation (S4 & S5), I represents the current (A), v is the scan rate (V s*), and a and

b are the variable and the slope obtained.

The contribution from capacitive-controlled and diffusion-controlled mechanisms can be obtained

from the following equation.

i(V) =K,v+ K,p'/? (S6)



In the above equation (S6), i(V) denotes the potential-dependent current, K; v represents the surface
capacitive contribution, and K,v” stands for the diffusion-controlled contribution. The equation

S6 can be rewritten in the following manner to obtain the values of K; and K.

i
£l=m¢ﬂ+@
o172

(S7)

For the better functioning of the two-electrode system and to obtain its maximum potential, perfect
mass balance between the positrode and the negatrode should be obtained. The rational calculation

to obtain the mass ratio between the positrode and the negatrode can be estimated using the

following equation (4" =47).

m, C_ X AV_

m_ C+ X AV_I_ (S8)

Here ‘m.’ and ‘m_’ represent the mass of the electrode material on the positrode and the negatrode,
respectively, while ‘C.’ and ‘C-’ denote the specific capacity of the positrode and the negatrode,
respectively, and ‘AV,” and ‘AV_’ stand for the voltage window of the positrode and the negatrode,
respectively.

The specific power (E;) and specific power (P;) are the important parameters of an asymmetric

hybrid device, and these parameters can be determined using the following equations (S9 and S10).

I % f V(t)dt

E=—*Y
mx 3.6 (S9)

N



E, % 3600

PS
t (S10)

Here, E; denotes the specific energy (Wh kg™'), P, stands for specific power (W kg'), and

f v(de stands for the integral area of the GCD curve.

3. Figures and Table
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Figure S1. XPS survey spectra of the NF/C and the NF/CN-2 electrodes.
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Figure S2. EPRS signals of (a) NF/C, (b) NF/CN-2 electrodes, and (c) a comparison graph of
NF/C and NF/CN-2 electrodes.



Figure S3. The SEM images of the NF/CN-3 electrode at different magnifications.
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Figure S4. Interplanar fringe spacing measurement carried out for NF/C, NF/CN-1, and
NF/CN-2 electrodes.

11



Figure SS. The HR-TEM images of NF/CN-2 electrodes at different magnifications.
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Figure S6. HR-TEM EDX elemental mapping of (a) NF/C, (b) NF/CN-1, and (¢) NF/CN-2
electrodes, and energy-dispersive X-ray (EDX) spectra of (d) NF/C, (e) NF/CN-1, and
(f) NF/CN-2 electrodes.
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Figure S7. CV profile of (a) NF substrate at a scan rate of 2 mV s!, CV profile of (b) NF/CN-2,
(¢) NF/C, (d) NF/CN-1, and (e) NF/CN-3 electrodes at various sweep rates (2-50 mV s!), and the
GCD graphs of (f) NF/C, (g) NF/CN-1, and (h) NF/CN-3 electrodes at different current densities
(1-20 mA cm?).
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Figure S8. (a) The variation of areal capacity (C,) values for NF/C, NF/CN-1, NF/CN-2, and
NF/CN-3 electrodes at various current densities (1-20 mA ¢m2), (b) Comparison GCD curves of
NF/C, NF/CN-1, NF/CN-2, and NF/CN-3 electrodes at a current density of 1 A g!, The graphs
displaying the variation of (c) specific capacity (C,) and (d) specific capacitance (Cs,) values for
NF/C, NF/CN-1, NF/CN-2, and NF/CN-3 electrodes at various current densities (1-20 A g).
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Figure S9. Cyclic voltammetry curves of (a) NF/C, (b) NF/CN-1, and (c) NF/CN-2 and
(d) NF/CN-3 electrodes measured in the non-faradaic region under identical conditions
(2-25 mV s in the range of 0.0 to 0.1 V, and (¢) comparison of surface concentration and
Electrochemically Accessible Surface Area (ECSA) and surface concentration of all the
participating electrodes.
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Figure S11. Logarithm profile of log (i) versus log (v) for anodic and cathodic peaks at different
potentials for (a) NF/C, (b) NF/CN-1, (¢) NF/CN-2, and (d) NF/CN-3 electrodes calculated for
different scan rates (2-50 mV s') and the plot between i(V)/v'"? and v'? for (e) NF/C,
(f) NF/CN-1, (g) NF/CN-2, and (h) NF/CN-3 electrodes calculated for different scan rates
(2-50 mV s).
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Figure S12. Nyquist plots fitted using equivalent circuits for (a) NF substrate, (b) NF/C,
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Figure S13. (a) The XRD spectra of the spent NF/CN-2 electrode after 5000 continuous charge
and discharge cycles; (b)-(e) the post-mortem SEM images of the respective electrode (NF/CN-2)

at various degrees of magnification.
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Figure S14. Schematic representation of (a) the electronic configuration pertaining to Ce*" and
Ni3*" and Z-axis extension, and (b) Proposed Ni 3d - O 2p - Ce 4f orbital coupling.
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Figure S15. (a) Ultraviolet photoelectron spectroscopy (UPS) spectra of NF/C and NF/CN-2
electrodes, (b) E pm, and (¢) Ecyorr of NF/C and NF/CN-2 electrodes.
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Figure S16. (a) CV profile of the NF/PC negatrode at various sweep rates (2-100 mV s),
(b) Comparison of CV graph of the NF/PC negatrode with bare NF at a sweep rate of 2 mV s°!
(¢) GCD profile of NF/PC negatrode at different current densities (1-10 A gV),
(d) Specific capacity (C,) obtained from GCD of NF/PC negatrode at various densities
(1-10 A g1, (e) Nyquist plot of NF/PC negatrode, and the inset shows the equivalent circuit and
(f) Comparison of the specific capacity (C,) of the AHC fabricated using NF/CN-2//NF/PC for
various current densities (1-18 A g1).
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Figure S17. (a) The XRD spectra of the spent NF/CN-2 electrode from the AHC after 10,000
continuous charge and discharge cycles at different magnifications, (b)-(e) the SEM image of the
respective electrode (NF/CN-2) at various degrees of magnification.
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Table S1. Comparison of the energy storage profile of Ce-based electrode materials in three-

electrode system.

. Current
- d Potential densitv (A | Soecifi ] Referenc
ectrodes window Electrolyte ens1fy ( pecific capacity e
\%) g)
CeO, 0.80 1 M NaCl 2 523F g! 2
Ce-MOF 0.55 2 M KOH 2 118 Fg'! 3
CeO, 0.45 1 M KOH 1 400 C g'! 4
Ce0, 0.80 1 M HCI 2 927F g'! 5
1
TiO,/CeO,/Ag 1.00 1 M H,S0, 996 F g! 6
Ce0,/NiOOH/Ni(OH), 0.50 3 M KOH 1 545 C g''&1091 F g'' | This work
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