

1

Supporting Information

2 **Highly selective one-step CO₂ conversion to liquid alcohols**

3 **through plasma synergistic MOFs catalysis**

4 Chong Qi^{a,b†}, Pengchen He^{a†}, Yuan Gao^a, Dengke Xi^a, Yuxuan Xu^{a,b}, Liguang Dou^a,

5 Li Lv^{a,c}, Cheng Zhang^{a,b}, Tao Shao*^{a,b}

6 ^a Beijing International S&T Cooperation Base for Plasma Science and Energy

7 Conversion, Institute of Electrical Engineering, Chinese Academy of Sciences,

8 Beijing 100190, China

9 ^b University of Chinese Academy of Sciences, Beijing 100049, China

10 ^c Hefei University of Technology, Anhui 230009, China

11

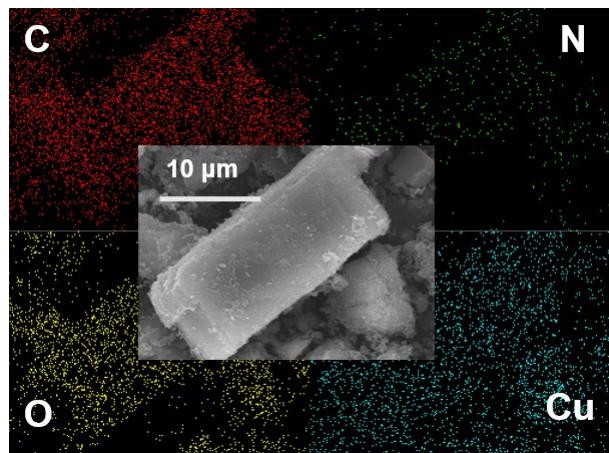
12 *Corresponding authors

13 Email: st@mail.iee.ac.cn

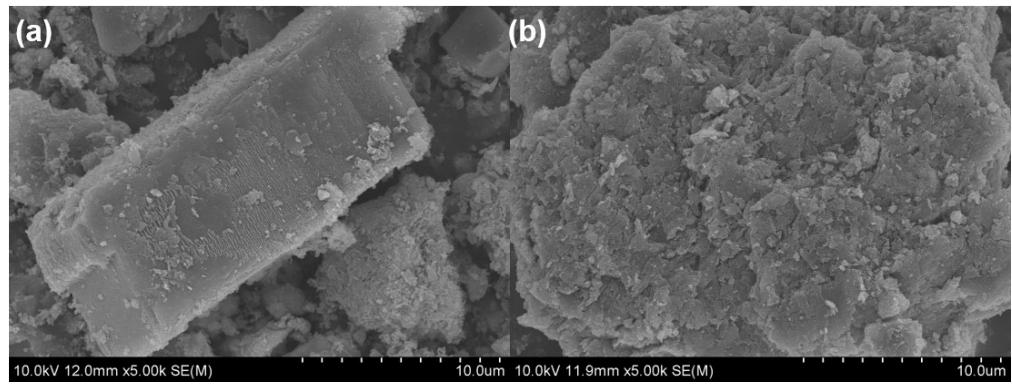
14 [†]Chong Qi and Pengchen He contributed equally to this work.

15

16



- 1 **Contents**
- 2 **1. Characterization of fresh X% Co/Cu-BDC-NH₂**
- 3 **2. Electrical characterization**
- 4 **3. ¹H NMR spectra of major liquid products**
- 5 **4. Catalyst stability results**
- 6 **5. Characterization of spent catalysts**
- 7 **6. CO₂-TPD results**
- 8 **7. CO-DRIFTS characterization results**
- 9 **8. Plasma-coupled in-situ infrared spectroscopy results**
- 10 **9. Supplementary tables**
- 11
- 12


1 **1. Characterization of fresh X% Co/Cu-BDC-NH₂**

2

3 **Figure S1.** Scanning electron microscope (SEM) images of Cu-BDC-NH₂ and SEM
4 mapping of Cu-BDC-NH₂.

5

2 **Figure S2.** SEM images of (a) Cu-BDC-NH₂ and (b) 10% Co/Cu-BDC-NH₂.

3

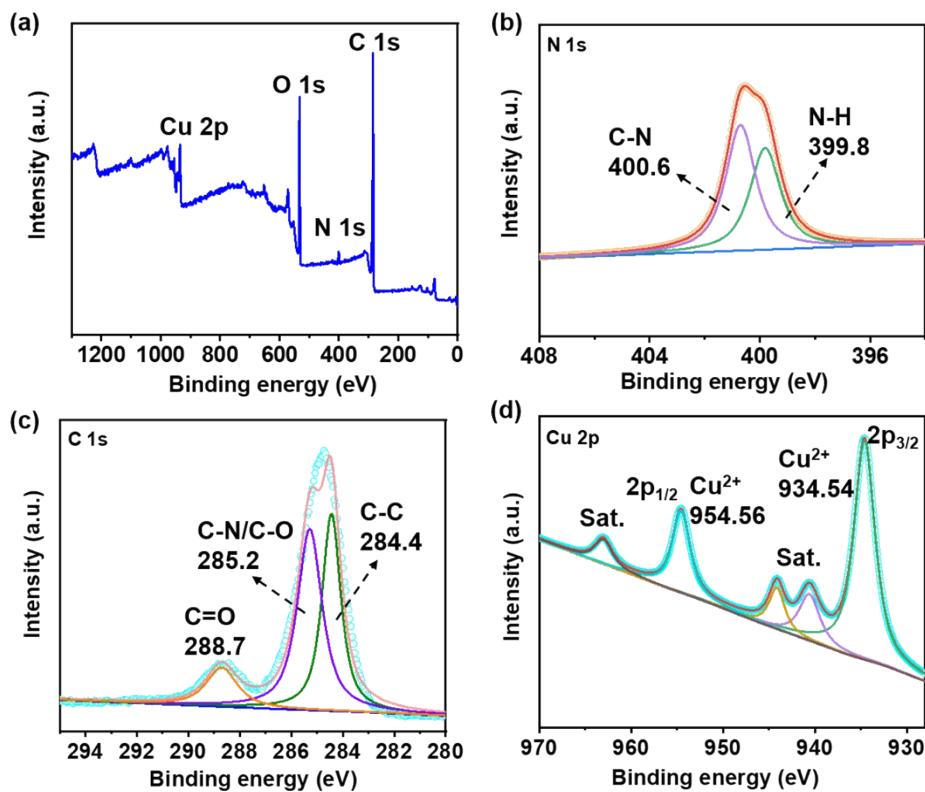
1 **Table S1.** Inductively coupled plasma optical emission spectrometry (ICP-OES)
2 analysis of 5% Co/Cu-BDC-NH₂, 10% Co/Cu-BDC-NH₂ and 15% Co/Cu-BDC-NH₂.

Catalyst	Co content (wt%)
5% Co/Cu-BDC-NH ₂	4.4
10% Co/Cu-BDC-NH ₂	8.5
15% Co/Cu-BDC-NH ₂	14.2

3
4

1 **Table S2.** S_{BET} , pore volume and pore diameter of fresh catalysts.

Samples	$S_{\text{BET}}^{\text{a}}$ (m^2/g)	Pore volume ^b (cm^3/g)	Pore diameter ^c (nm)
Cu-BDC-NH ₂	24.5	0.06	10.5
10% Co/Cu-BDC-NH ₂	10.4	0.06	21.6

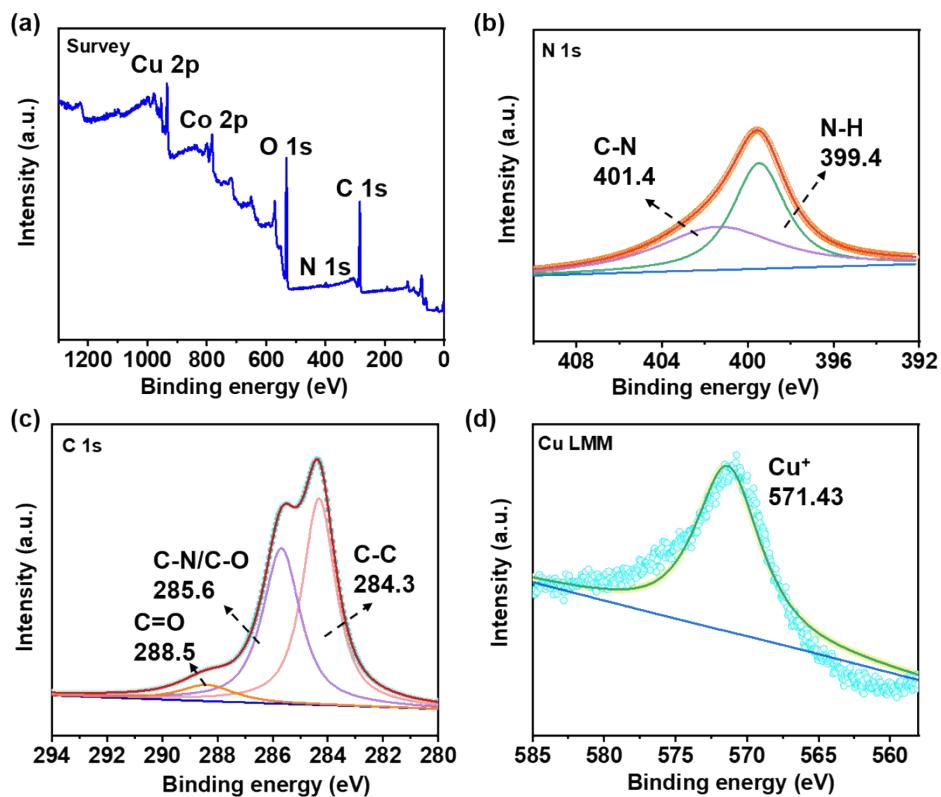


2 ^aThe Brunauer-Emmett-Teller (BET) method was used to determine the specific
3 surface area of samples.

4 ^bThe single point method (at $p/p^0 = 0.99$) was used to determine the total pore
5 volume.

6 ^cThe BJH method was used to determine the average pore diameter.

7



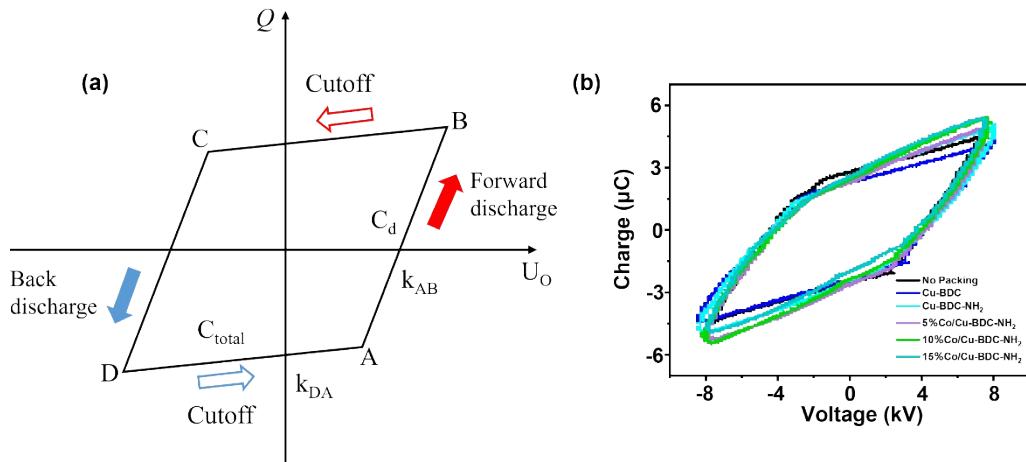
1

2 **Figure S3.** (a) Survey XPS spectra, (b) N1s XPS profiles, (c) C1s XPS profiles and (d)

3 Cu 2p XPS profiles of Cu-BDC-NH₂.

4

1


2 **Figure S4.** (a) Survey XPS spectra, (b) N1s XPS profiles, (c) C1s XPS profiles and (d)

3 Auger Cu LMM spectrum of 10% Co/Cu-BDC-NH₂.

4

1 2. Electrical characterization

2
3 **Figure S5.** (a) The standard Lissajous figures and (b) the actual measured Lissajous
4 figure.

5 Within each cycle of the sinusoidal voltage excitation, the gas gap in the dielectric
6 barrier discharge (DBD) reactor undergoes two breakdown and two quenching events.
7 When the applied voltage rises positively to the breakdown threshold, the gap breaks
8 down and discharges, entering a conducting state, during which the voltage amplitude
9 decreases. After the discharge quenches, the voltage continues to follow the sinusoidal
10 waveform. An identical process occurs during the negative half-cycle. According to its
11 equivalent circuit model (**Figure S5a**), the entire system can be represented by the
12 series combination of the dielectric capacitor (C_d) and the gap capacitor (C_g) when the
13 gas gap is not broken. Upon breakdown, the gap behaves as a short circuit, leaving only
14 the dielectric capacitor in the circuit. This physical process manifests as linear segments
15 with different slopes in the Lissajous figure. The slope of each linear segment in the
16 figure has a clear physical meaning: it directly corresponds to the instantaneous
17 equivalent capacitance of the system in that specific state. Specifically, the discharge
18 stage (AB and CD section), and its slope corresponds to the dielectric capacitance C_d .
19 The cut-off stage (DA and BC segments), and its slope corresponds to the total
20 capacitance C_{total} of the system.

21 $C_d = k_{AB}$ (S1)

$$1 \quad C_{\text{total}} = k_{\text{DA}} \quad (\text{S2})$$

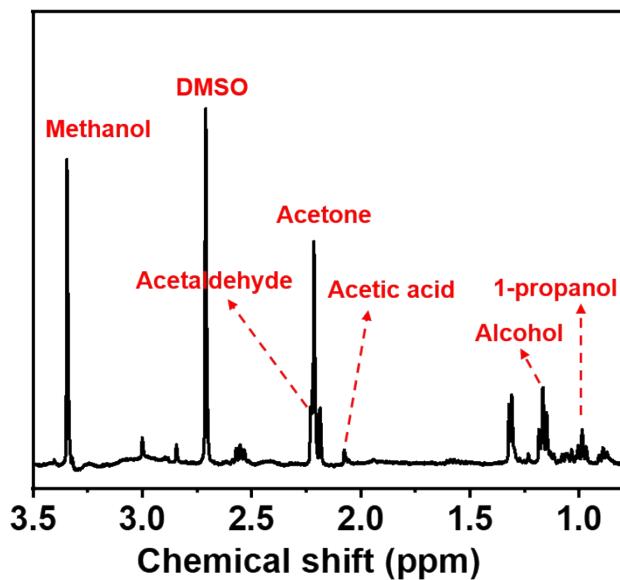
2 Based on the series relationship of capacitors, the gap capacitance C_g can be
3 calculated:

$$C_g = \frac{C_d \times C_{total}}{C_d - C_{total}} \quad (S3)$$

According to **Table S3**, the system capacitance increased progressively from 28.5 pF (no catalyst) to 62.6 pF (15% Co/Cu-BDC-NH₂) with catalyst filling, while the discharge power varied between 22.4 W and 26.7 W.

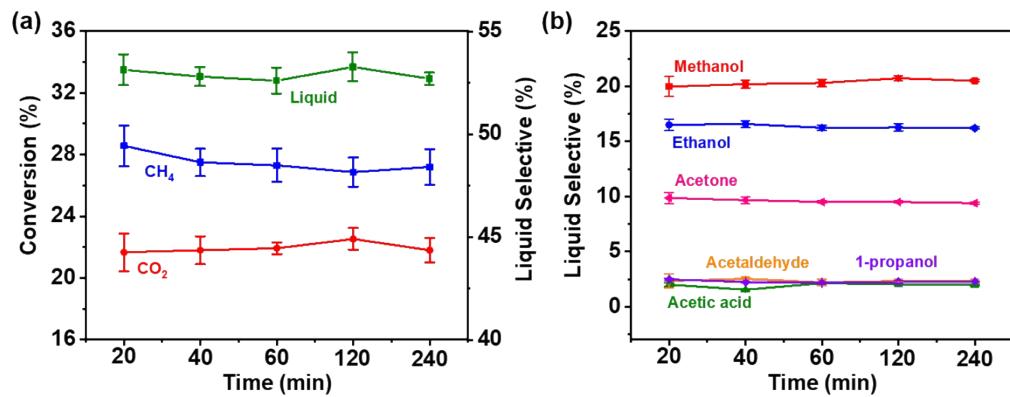
8 Table S3. Capacitances properties

Sample	C_d (pF)	C_{total} (pF)	C_g (pF)	P (W)
Plasma	132.2±1.0	23.5±1.0	28.5±1.0	23.4
Cu-BDC	114.4±2.0	24.1±1.0	30.5±1.0	25.8
Cu-BDC-NH ₂	111.1±1.0	31.4±2.0	43.7±1.0	22.4
5%Co/ Cu-BDC-NH ₂	110.5±1.0	34.8±1.0	50.8±1.0	25.6
10%Co/ Cu-BDC-NH ₂	117.3±1.0	38.8±2.0	57.9±1.0	25.1
15%Co/ Cu-BDC-NH ₂	120.2±1.0	41.2±1.0	62.6±1.0	26.7

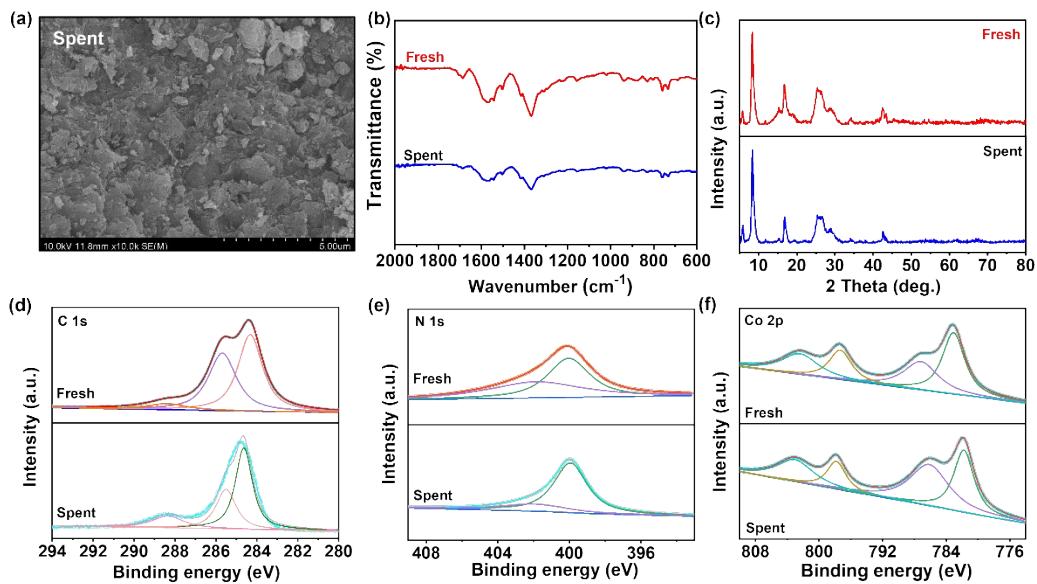


1 3. ^1H NMR spectra of major liquid products

2


3 **Figure S6.** ^1H NMR spectra of major liquid products.

4


1 4. Catalyst stability results

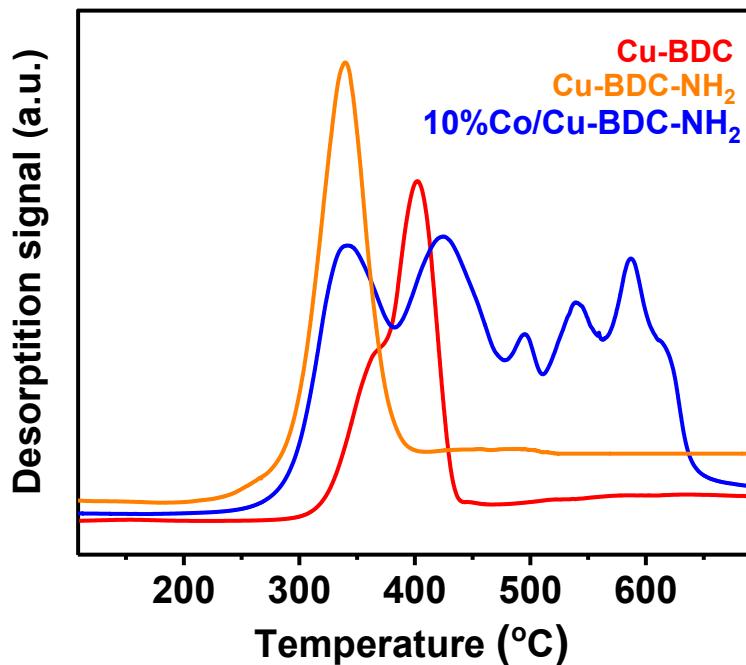
2
3 **Figure S7.** Catalyst stability using 10% Co/Cu-BDC-NH₂ (a) gas conversion and total
4 liquid selectivity and (b) selectivity of main liquid products over time on stream.
5

1 5. Characterization of spent catalysts

2

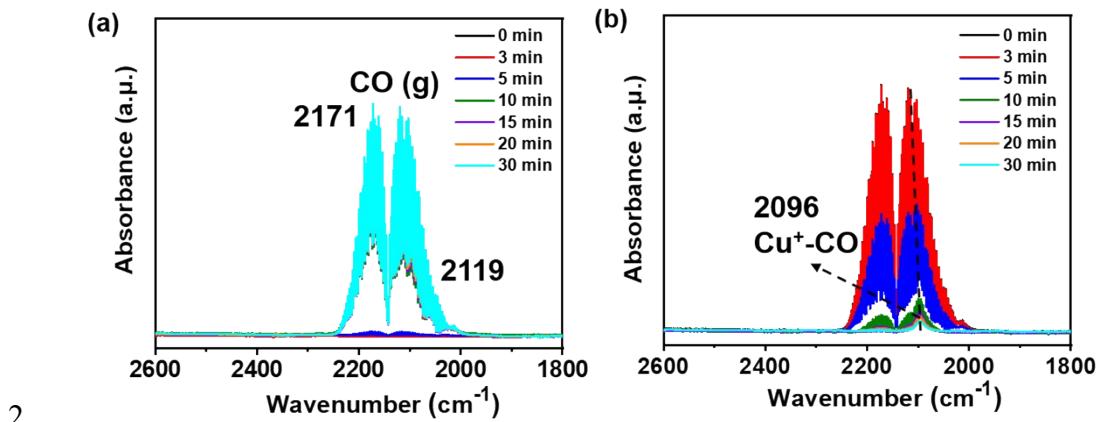
3 **Figure S8.** Characterization of fresh and spent 10% Co/Cu-BDC-NH₂ (a) SEM
4 images (b) FTIR spectra and (c) XRD patterns. XPS spectra of (d) C 1s (e) N 1s and
5 (f) Co 2p.

6 A comparison of the FTIR spectra before and after the reaction revealed the peak
7 positions and shapes remained largely identical, while the intensities changed
8 significantly. The high consistency in peak position and shape indicated that the main
9 framework, core functional groups, and local chemical environment of the catalyst were
10 not irreversibly altered or substantially degraded, preliminarily confirming its good
11 chemical and structure stability. In contrast, the significant changes in absorption
12 intensity suggested an evolution in the catalyst's physical state. This was supported by
13 XRD analysis, which showed a slight decrease in the crystallinity of the catalyst after
14 reaction. The reduction in long-range order directly affected the infrared absorption
15 efficiency of lattice vibrations, leading to an overall weakening of the characteristic
16 peak intensity. Therefore, the observed spectral intensity changes were attributed
17 primarily to the evolution of the catalyst's physical structure — such as its crystallinity
18 and micro-ordering — rather than to any fundamental change in its chemical
19 composition.

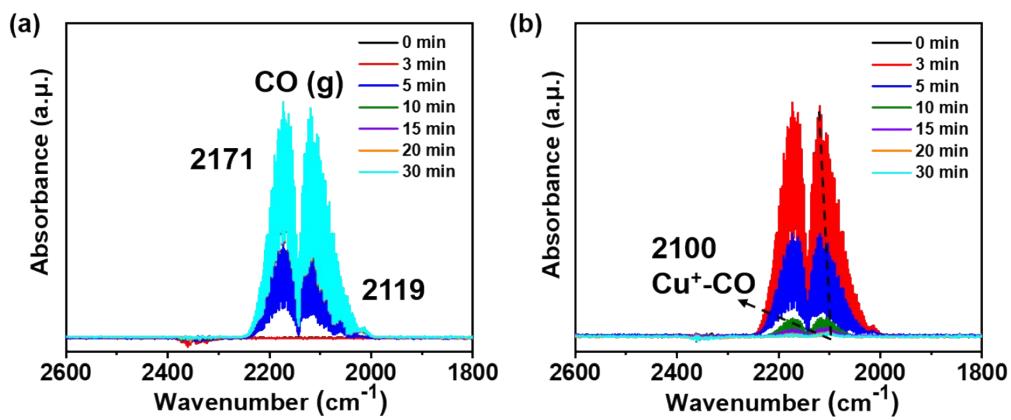


1 Analysis of the C1s XPS spectra before and after reaction showed that the intensity
2 of C-C/C-H peak at 284.3 eV remained unchanged. This indicated that the basic carbon
3 skeleton of the catalyst remained stable during the reforming reaction, without
4 significant consumption or coverage. Concurrently, a decrease in the intensity of the C-
5 N/C-O peak at 285.6 eV was observed, while that of the C=O peak at 288.5 eV
6 increased. This change was likely due to the formation of carbonyl-rich (C=O)
7 intermediate or oxygen-containing species during the reaction, which became strongly
8 adsorbed or chemically bonded to the catalyst surface, thereby directly enhancing the
9 C=O signal. This inference was further corroborated by the corresponding C=O
10 signatures observed via plasma-coupled in-suit infrared spectroscopy. Moreover,
11 analysis of the post-reaction N 1s spectrum revealed a reduction in the C-N peak at
12 401.4 eV, consistent with the decrease noted in the C 1s spectrum.

13



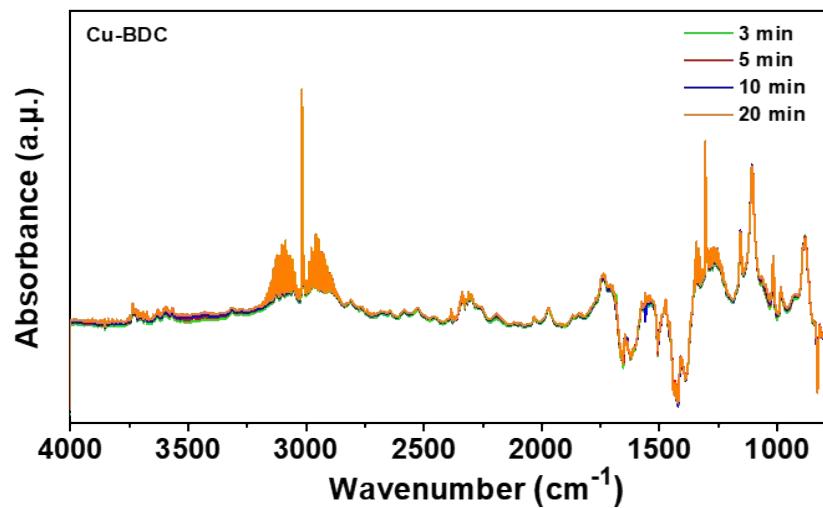
1 **6. CO₂-TPD results**



1 7. CO-DRIFTS characterization results

3 **Figure S10.** (a) DRIFT spectra of Cu-BDC-NH₂ during CO adsorption. (b) DRIFT
4 spectra of Cu-BDC-NH₂ after CO adsorption with subsequent Ar flush.

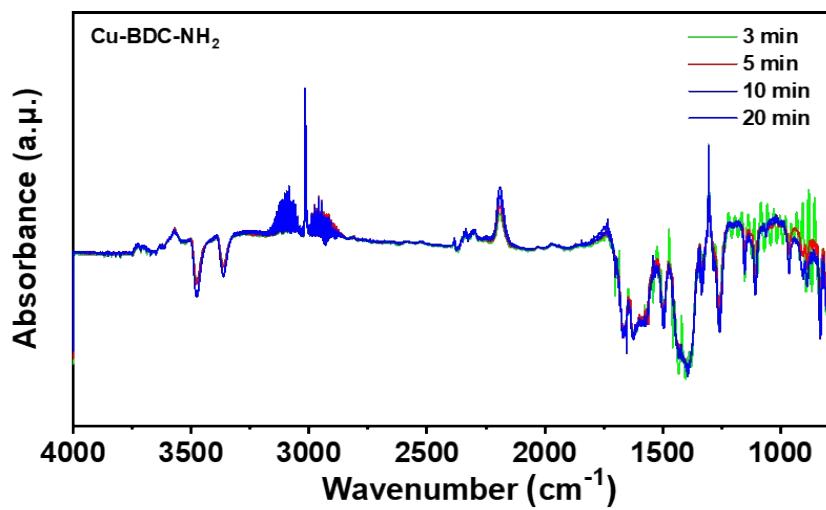
1


2 **Figure S11.** (a) DRIFT spectra of 10% Co/Cu-BDC-NH₂ during CO adsorption. (b)

3 DRIFT spectra of 10% Co/Cu-BDC-NH₂ after CO adsorption with subsequent Ar flush.

4

1 **8. Plasma-coupled in-situ infrared spectroscopy results**

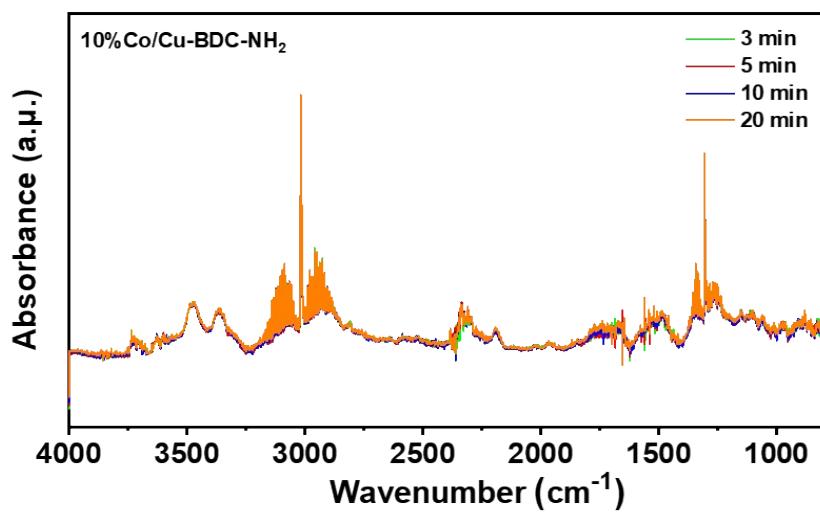


2

3 **Figure S12.** Plasma-coupled in-situ infrared spectroscopy of Cu-BDC during plasma-
4 catalytic DRM reaction (CO₂/CH₄ = 1:1, total gas flow rate = 30 mL/min, discharge
5 power = 20 W)

6

7



1

2 **Figure S13.** Plasma-coupled in-situ infrared spectroscopy of Cu-BDC-NH₂ during
3 plasma-catalytic DRM reaction (CO₂/CH₄ = 1:1, total gas flow rate = 30 mL/min,
4 discharge power = 20 W)

5

6

1

2 **Figure S14.** Plasma-coupled in-situ infrared spectroscopy of 10% Co/Cu-BDC-NH₂
3 during plasma-catalytic DRM reaction (CO₂/CH₄ = 1:1, total gas flow rate = 30
4 mL/min, discharge power = 20 W)

5

1 **9. Supplementary tables**

2 **Table S4.** Effect of catalysts on the conversion and total liquid selectivity (total flow
3 rate = 40 mL/min, discharge power = 25 W).

Sample	CO ₂ (%)	CH ₄ (%)	Total liquid selectivity (%)	C balance (%)
No packing	15.7	20.6	21.3	96
Cu-BDC	18.3	23.7	43.1	97
Cu-BDC-NH ₂	19.6	24.9	45.4	98
5% Co/Cu-BDC-NH ₂	19.1	24.4	48.3	97
10% Co/Cu-BDC-NH ₂	22.7	27.1	53.9	98
15% Co/Cu-BDC-NH ₂	18.6	24.5	40.1	96

1 **Table S5.** Effect of catalysts on the selectivity of gas products (total flow rate = 40
2 mL/min, discharge power = 25 W).

Sample	H ₂ (%)	CO (%)	C ₂ H ₆ (%)	C ₂ H ₄ (%)	C ₃ H ₈ (%)	C ₃ H ₆ (%)	C ₄ H ₁₀ (%)
No packing	29.3	36.1	26.6	8.4	5	0.08	2.7
Cu-BDC	23.1	28.3	21.1	1	4.3	0.07	2.2
Cu-BDC-NH ₂	23.4	26.8	20.1	0.9	4.5	0.07	2.3
5% Co/Cu-BDC-NH ₂	23.2	25.5	19.2	0.9	3.9	0.06	1.8
10% Co/Cu-BDC-NH ₂	20.2	22.3	17.5	0.6	3.9	0.08	1.8
15% Co/Cu-BDC-NH ₂	25.8	29.9	21.3	1.2	4.6	0.1	2.3

3
4
5

1 **Table S6.** Effect of catalysts on the selectivity of liquid products (total flow rate = 40
2 mL/min, discharge power = 25 W).

Samples	CH ₃ OH (%)	C ₂ H ₅ O (%)	CH ₃ COOH (%)	CH ₃ CHO (%)	C ₃ H ₇ OH (%)	C ₃ H ₆ O (%)
No packing	8.6	4.6	0.7	0.9	1.6	4.5
Cu-BDC	13.4	10.6	0.5	2.2	4.8	11.6
Cu-BDC-NH ₂	18.7	8.6	0.9	2.1	3.6	11.7
5% Co/Cu-BDC-NH ₂	16.1	10.7	1.2	2.5	4.4	13.4
10% Co/Cu-BDC-NH ₂	20	16.5	2.3	2.3	2.5	9.9
15% Co/Cu-BDC-NH ₂	16.3	11.2	0.9	1.9	2.2	7.2

1 **Table S7.** Time-on-stream stability of 10% Co/Cu-BDC-NH₂ about conversion and
2 total liquid selectivity.

Time (min)	CO ₂ (%)	CH ₄ (%)	Total liquid selectivity (%)
20	21.7	28.6	53.1
40	21.8	27.5	52.8
60	21.9	27.3	52.6
120	22.5	26.9	53.2
240	21.8	27.2	52.8

3
4

1 **Table S8.** Time-on-stream stability of 10% Co/Cu-BDC-NH₂ about selectivity of
2 liquid products (Total flow: 40 mL min⁻¹, Discharge power: 25 W) (average value).

Time (min)	CH ₃ OH (%)	C ₂ H ₅ OH (%)	CH ₃ COOH (%)	CH ₃ CHO (%)	C ₃ H ₇ OH (%)	C ₃ H ₆ O (%)
20	20.0	16.5	2	2.3	2.5	9.9
40	20.2	16.6	1.5	2.5	2.2	9.7
60	20.3	16.2	2.1	2.2	2.2	9.8
120	20.7	16.3	2.0	2.3	2.2	9.5
240	20.5	16.2	2.0	2.3	2.3	9.4

3
4

1 **Table S9.** Spectroscopic characteristics of the main species detected in the CO₂-CH₄
2 plasma.

Species	Electron transition	Wavelength (nm)	Reference
CO	$b^3\Sigma_{2u}-a^3\Pi_{1g}$	283.4	[1], [2]
		296.6	[1], [2]
CO ⁺	B ² Σ-X ² Σ	288.8	[1]
CO ₂ ⁺	$A^2\Pi_u-X^2\Pi_g$	305.8	[1], [7]
		327	[1], [7]
		351.8	[6], [7]
		368.3	[6], [7]
CH	A ² Δ-X ² Π	431.4	[6], [2], [3], [4]
	B ² Σ-X ² Π	388.2	[6], [2], [4]
	C ² Σ ⁺ -X ² Π	314.6	[6], [7], [4]
CO	$B^1\Sigma-A^1\Pi$ (Angstrom system)	450.7	[6], [8]
		483	[6], [8]
		520	[6], [8]
		559.3	[6], [8]
		608.1	[6], [8]
C ₂	d ² Π-a ³ Π (Swan)	469.4	[6], [7]
		471.5	[6], [7]
		516.8	[6], [7], [3]
H _α	3d-2p	656.3	[6], [7]

3

4

1 **Table S10.** Species identified in the plasma-catalytic DRM reaction over 10% Co/Cu-
 2 BDC-NH₂ by plasma-coupled in-situ infrared spectroscopy.

Species	Assignment	Wavenumber (cm ⁻¹)	Reference
Alcohols	C-O stretching vibration	1016	5
*CH ₃ O	H-C=O bending vibration	1106	6, 7
*CH ₃ O	C-O stretching vibration	1157	8, 9
Bidentate carbonates		1306	10, 11
Monodentate carbonates		1480	10, 12
-NH ₂ COOH	C=O stretching vibration	1730	13,14
*CO	Bridging CO adsorbed	1970	15, 16
*CO	Linear CO adsorbed	2032	15, 17, 18
CO (g)		2190	19, 20
CO ₂ (g)		2362	21, 22
*HCOO		2642	23
*CH ₃	C-H stretching vibration	2810	24,25
CH ₄ (g)		3016	26
Surface OH	O-H stretching vibration	3364	27
Isolated OH	O-H stretching vibration	3566, 3600, 3625	28,29
CO ₂ (g)	Overtone of CO ₂	3725	21

3

4

1 **Table S11.** Summary of conversions and liquid selectivity reported in the literature.

Reference	CO ₂ (%)	CH ₄ (%)	Total liquid selectivity (%)	Alcohols selectivity (%)
[30]	18	22	40.1	35
[31]	30.2	34.7	55	38.3
[32]	~12.2	~22	~25	~10
[33]	~7.3	~11.6	~25	~19
[34]	~7	~17	~45	~38
This work	22.7	27.1	53.9	38.9

2 **Table S12.** Summary of mechanisms and strategies reported in the literature.

Reference	Strategy	Mechanism
[30]	DBD reactor AC power	1. Methanol is formed mainly via CH ₃ coupling with OH radicals. 2. The pathway is enabled by efficient CO ₂ activation and OH radical enrichment, both driven by the iron active species.
[31]	DBD reactor AC power	1. Liquid product formation proceeds via stepwise CO hydrogenation coupled with CH _x and OH radical coupling. 2. This mechanism is facilitated by the high-performance catalyst prepared through the grinding method.
[32]	DBD reactor AC power	1. The prepared CuSA-CN catalyst's well-defined Cu–N ₄ single-atom sites enable acetic acid synthesis via a bidirectional mechanism. 2. The charge transfer between metal and support facilitates reactant activation, while the sites also

		lower the energy barriers for key steps like CH ₄ dissociation and C–C coupling.
[33]	DBD reactor	1. Water participates as a reactant, cooperating with the copper catalyst to promote CH ₃ and OH coupling into methanol 2. Water facilitates methanol desorption from the catalyst surface, enhancing efficiency and preventing overconversion.
[34]	DBD reactor	1. In plasma-catalyzed DRM, copper valence state and loading jointly determine alcohol product distribution. 2. Cu ²⁺ species enhance alcohol selectivity, while increased copper loading shifts the major product from methanol to ethanol.
This work	DBD reactor	1. The Co/Cu-BDC-NH ₂ catalyst enhances CO ₂ adsorption via basic -NH ₂ groups and improves CO utilization with loaded Co. 2. Its mechanism acts as a "molecular shunt switch" to dynamically regulate the reaction pathway. 3. -NH ₂ functionalization shifts the route from stepwise CO hydrogenation toward OH/CH _x coupling. Co addition then reverses this shift, restoring CO hydrogenation as the main pathway. Co and -NH ₂ also work together to regulate CH ₃ O intermediate formation and consumption.

1 Building upon the established mechanism by which metal active sites or metallic
 2 oxide active sites mediate the coupling of CH_x and OH radicals to form oxygenated
 3 products, this study proposed a novel catalyst design strategy. The synthesized Co/Cu-

1 BDC-NH₂ material enabled dynamic modulation of the reaction pathway through the
2 introduction of –NH₂ groups and Co species. Their synergistic interaction likely
3 allowed more flexible regulation of key intermediates, thereby endowing the catalyst
4 with enhanced CO₂ conversion efficiency and improved product selectivity.

5

1 References

2 1. Y. Wang, Y. Chen, J. Harding, H. He, A. Bogaerts and X. Tu, *Chem. Eng. J.*, 2022,
3 **450**, 137860.

4 2. X. Wang, Y. Gao, S. Zhang, H. Sun, J. Li and T. Shao, *Appl. Energ.*, 2019, **243**,
5 132-144.

6 3. X. Zhang, Y. Wenren, W. Zhou, J. Han, H. Lu, Z. Zhu, Z. Wu and M. S. Cha, *J.
7 Phys. D Appl. Phys.*, 2020, **53**, 194002.

8 4. Y. Gao, L. Dou, B. Feng, C. Zhang and T. Shao, *Energ. Convers. Manage.*, 2023,
9 **276**, 116570.

10 5. J. Shi, C. Mahr, M. M. Murshed, T. M. Gesing, A. Rosenauer, M. Bäumer and A.
11 Wittstock, *Phys. Chem. Chem. Phys.*, 2017, **19**, 8880-8888.

12 6. Q. Zhang, S. Wang, X. Shi, M. Dong, J. Chen, J. Zhang, J. Wang and W. Fan, *Appl.
13 Catal. B Environ.*, 2024, **346**, 123748.

14 7. J. Li, W. Pan, Q. Liu, Z. Chen, Z. Chen, X. Feng and H. Chen, *J. Am. Chem. Soc.*,
15 2021, **143**, 6551-6559.

16 8. S. Deng, N. Wang, Y. Zhu and K. Thummavichai, *Catal. Sci. Technol.*, 2024, **14**,
17 6443-6465.

18 9. P. Liu, Z. Huang, X. Gao, X. Hong, J. Zhu, G. Wang, Y. Wu, J. Zeng and X. Zheng,
19 *Adv Mater.*, 2022, **34**, e2200057.

20 10. H. Ren, H. Yang, J. Xin, C. Wu, H. Wang, J. Zhang, X. Bu, G. Yang, J. Li, Y. Sun
21 and P. Gao, *Appl. Catal. B Environ.*, 2024, **358**, 124440.

22 11. M. Zhao, J. Deng, J. Liu, Y. Li, J. Liu, Z. Duan, J. Xiong, Z. Zhao, Y. Wei, W.
23 Song and Y. Sun, *ACS Catal.*, 2019, **9**, 7548-7567.

24 12. J. Hu, Y. Li, Y. Zhen, M. Chen and H. Wan, *Chin. J. Catal.*, 2021, **42**, 367-375.

25 13. S.-C. Yang, S. H. Pang, T. P. Sulmonetti, W.-N. Su, J.-F. Lee, B.-J. Hwang and
26 C. W. Jones, *ACS Catal.*, 2018, **8**, 12056-12066.

27 14. Z. Bacsik, N. Ahlsten, A. Ziadi, G. Zhao, A. E. Garcia-Bennett, B. Martín-Matute
28 and N. Hedin, *Langmuir*, 2011, **27**, 11118-11128.

1 15. H. Sun, J. Lv, C. Wang, Y. Zhang, S. Sun, P. Zhang, G. Cheng, D. Mei, Y. Wang
2 and Z. Yan, *Fuel*, 2025, **381**, 133413.

3 16. X. Hu, J. Xu, Y. Gao, Z. Li, J. Shen, W. Wei, Y. Hu, Y. Wu, Y. Wang and M.
4 Ding, *Angew. Chem. Int. Ed.*, 2025, **64**, e202414416.

5 17. M. Liu, R. Zou and C.-j. Liu, *Appl. Catal. B Environ.*, 2025, **360**, 124549.

6 18. Y. Li, L. Guo, M. Du, C. Tian, G. Zhao, Z. Liu, Z. Liang, K. Hou, J. Chen, X. Liu,
7 L. Jiang, B. Nan and L. Li, *Nat. Commun.*, 2024, **15**, 5598.

8 19. T. Li, H. Zhao, L. Guo, G. Liu, J. Wu, T. Xing, T. Li, Q. Liu, J. Sui, Y. Han, J.
9 Liang, Y. He and N. Tsubaki, *ACS Catal.*, 2025, **15**, 1112-1122.

10 20. M. Tian, X. Tian, E. Ma, J. Hao, Z. Zuo and W. Huang, *ACS Sustainable Chem.
Eng.*, 2023, **11**, 13616-13627.

12 21. J. Shen, X. Cheng, W. Wei, X. Tian and M. Ding, *ACS Catal.*, 2025, **15**, 2402-
13 2414.

14 22. N. Liu, Q. Fan, J. Wei, G. Zhang, J. Sun, W. Li, C. Song and X. Guo, *ACS Catal.*,
15 2024, **15**, 179-192.

16 23. Q. Zhang, S. Wang, R. Geng, P. Wang, M. Dong, J. Wang and W. Fan, *Appl.
Catal. B Environ.*, 2023, **337**, 123013.

18 24. S. Song, H. Song, L. Li, S. Wang, W. Chu, K. Peng, X. Meng, Q. Wang, B. Deng,
19 Q. Liu, Z. Wang, Y. Weng, H. Hu, H. Lin, T. Kako and J. Ye, *Nature Catal.*, 2021,
20 **4**, 1032-1042.

21 25. V. L. Sushkevich, D. Palagin, M. Ranocchiari and J. A. van Bokhoven, *Science*,
22 2017, **356**, 523-527.

23 26. R. Ye, L. Ma, X. Hong, T. R. Reina, W. Luo, L. Kang, G. Feng, R. Zhang, M. Fan,
24 R. Zhang and J. Liu, *Angew. Chem. Int. Ed.*, 2024, **63**, e202317669.

25 27. J. Moon, Y. Cheng, L. L. Daemen, M. Li, F. Polo-Garzon, A. J. Ramirez-Cuesta
26 and Z. Wu, *ACS Catal.*, 2020, **10**, 5278-5287.

27 28. S. Eckle, H.-G. Anfang and R. J. Behm, *Appl. Catal. A-Gen.*, 2011, **391**, 325-333.

28 29. Y. Li, N. Liu, C. Dai, R. Xu, G. Yu, N. Wang, J. Zhang and B. Chen, *Catal.*, 2021,

1 **11**, 1444.

2 30. C. Qi, Y. Bi, H. Yu, H. Zhang, Q. Zhang, X. Wang, M. Fan, T. Xing, M. Wang,
3 M. Wu and W. Wu, *Ind. Eng. Chem. Res.*, 2024, **63**, 9576-9583.

4 31. X. Liu, P. Si, Y. Zhang, L. Cui, Y. Feng, T. Wang, M. Zhao, F. Liu and F. Han,
5 *Ind. Eng. Chem. Res.*, 2024, **63**, 1170-1178.

6 32. J. Wu, S. Song, L. Wang, R. Li, J. Wen, Y. Guo, J. Ding, D. Mei, H. Wan and G.
7 Guan, *Chem. Eng. J.*, 2024, **499**, 156439.

8 33. P. Ye, G. Miao, D. Ray, Z. Tang and C. Song, *ACS Sustainable Chem. Eng.*, 2025,
9 **13**, 7532-7540.

10 34. L. Wang, Y. Wang, L. Fan, H. Xu, B. Liu, J. Zhang, Y. Zhu and X. Tu, *Chem.*
11 *Eng. J.*, 2023, **466**, 143347.

12