

Supporting Information

Compartmentalized Structure Reconstruction in Metal-Organic Frameworks (MOFs) for Efficient Oxygen Evolution Reaction

Lin Ye,^b Dengrong Sun*^a

^a *College of Carbon Neutrality Future Technology, Sichuan University, Chengdu, P. R. China.*

^b *College of Chemistry, Sichuan University, Chengdu, P. R. China*

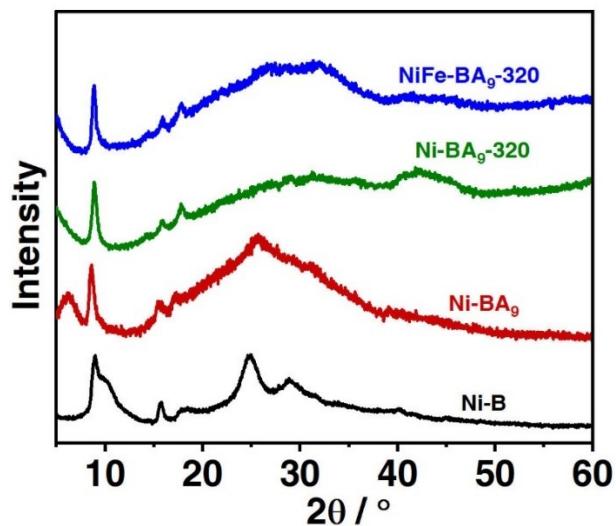
E-mail: dengrongsun@hotmail.com; dengrongsun@scu.edu.cn

Experimental section

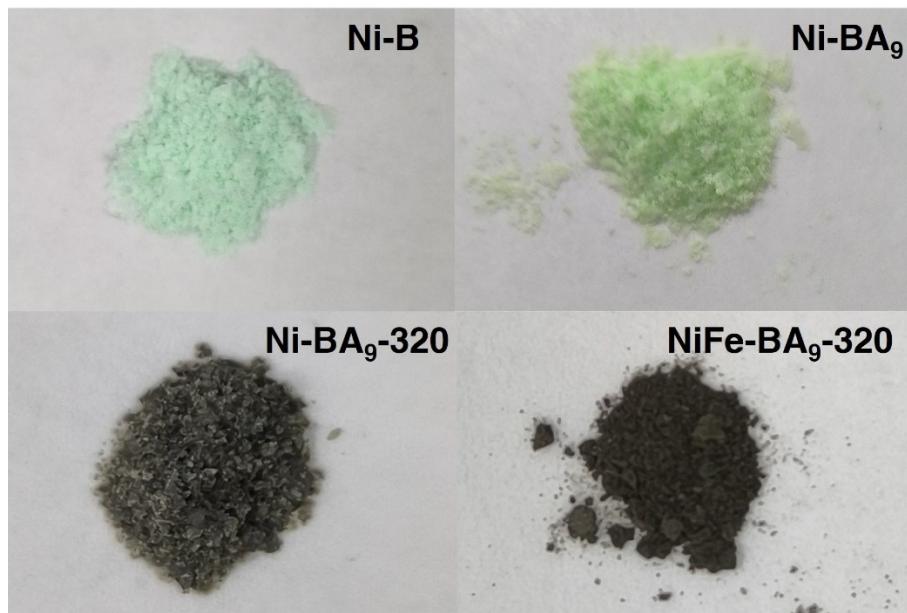
Materials. All chemicals were obtained from commercial sources and used without further purification. Nickel(II) nitrate hexahydrate ($\text{Ni}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}$), iron(III) chloride hexahydrate ($\text{FeCl}_3 \cdot 6\text{H}_2\text{O}$), potassium hydroxide (KOH), 1,4-Benzenedicarboxylic acid (H_2BDC , B), 2-Aminobenzene-1,4-dicarboxylic acid (ATA, A), Hydrochloric acid (HCl), N, N-dimethylformamide (DMF), Triethylamine (TEA) and ethanol were purchased from Sigma Aldrich Co.

Synthesis of Ni-BA_x . Ni-BA_x was prepared according to the previously reported procedures with slight modifications.^[1] Firstly, 32 mL DMF, 2 mL ethanol and 2 mL ultrapure water were mixed in a 100 mL glass bottle. Then, 0.75 mmol BDC and a certain amount of ATA were added to the above solution and dissolved under ultrasonication. Subsequently, 0.75 mmol $\text{NiCl}_2 \cdot 6\text{H}_2\text{O}$ was added. After Ni^{2+} salts were fully dissolved, 0.8 mL TEA was rapidly injected into the solution. The solution was then stirred for 5 min to obtain a uniform colloidal suspension. Afterwards, the solution was ultrasonicated continuously for 8 h (40 kHz) under confine condition. Eventually, the light green precipitate was collected via centrifugation and washed with ethanol and deionized water, respectively, followed by vacuum freeze-drying for over 12 h to obtain the final product. For comparison, Ni-MOF-B was also synthesized by a similar reaction in absence of ATA.

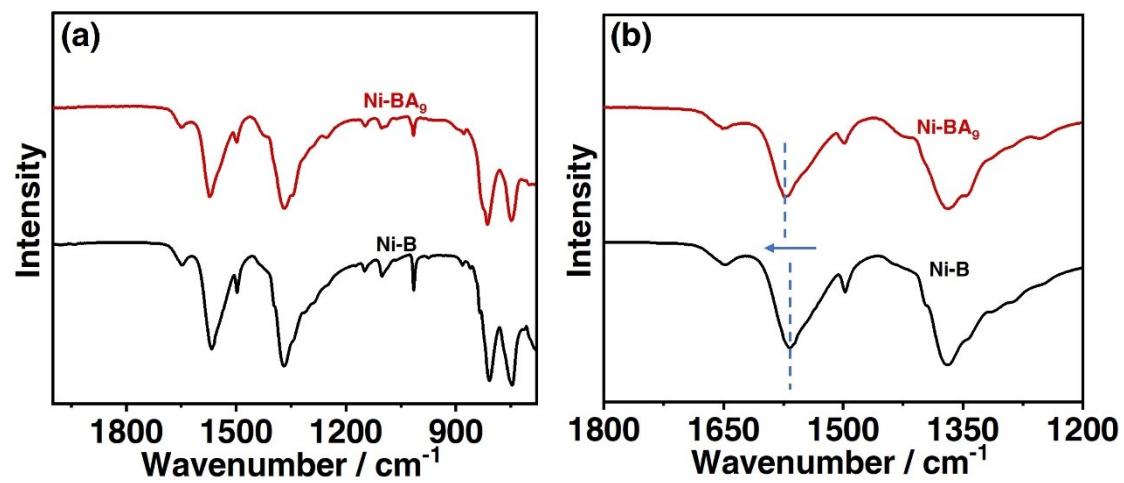
Synthesis of $\text{Ni-BA}_x\text{-T}$. The Ni-BA_x was placed into a porcelain boat, which was put in the middle of a quartz tube in a furnace under Ar flow. The tube was purged with Ar for 1h before heating to remove oxygen inside. The sample was heated up at a rate of 5 °C/min to 310 °C-330 °C for 1 h, then the furnace was naturally cooled to room temperature to obtain the $\text{Ni-BA}_x\text{-T}$.

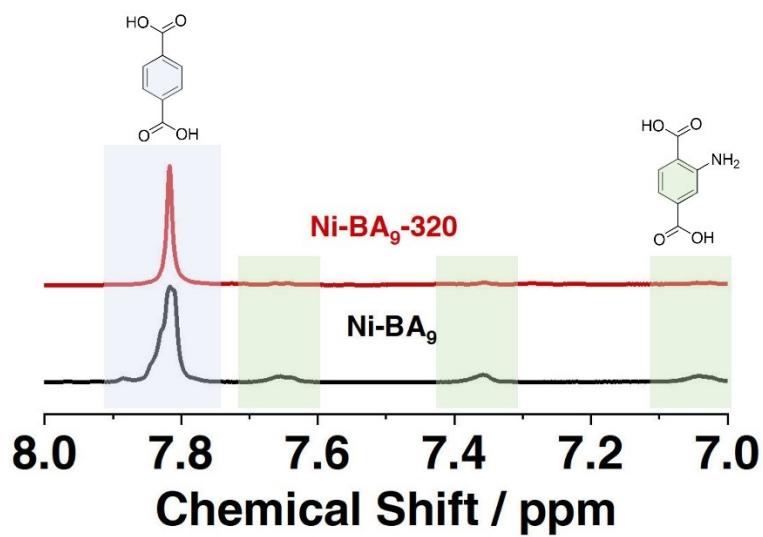

Synthesis of $\text{NiFe-BA}_x\text{-T}$. 15 mg of the as-prepared $\text{Ni-BA}_x\text{-T}$ was dispersed in 10 mL aqueous solution of 5 mM $\text{FeCl}_3 \cdot 6\text{H}_2\text{O}$. The suspension was transferred to a 20 mL glass vial and stirred for 12 h at room temperature. The resulting precipitate was collected by centrifugation at 8000 rpm and washed 3 times with water, followed by vacuum freeze-drying for over 12 h to obtain the $\text{NiFe-BA}_x\text{-T}$.

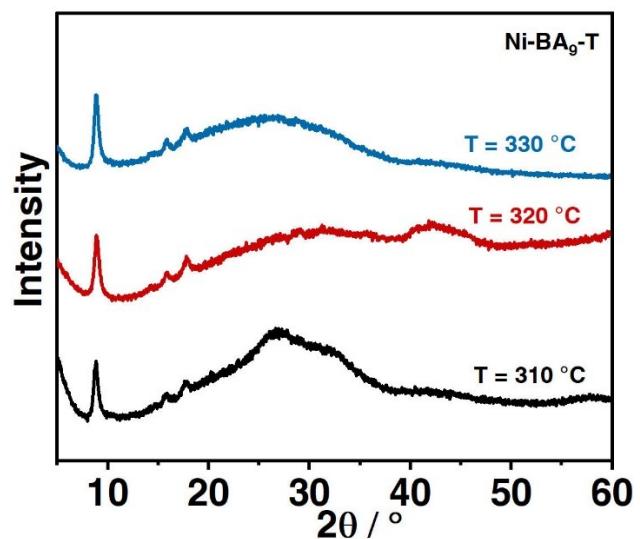
Characterization

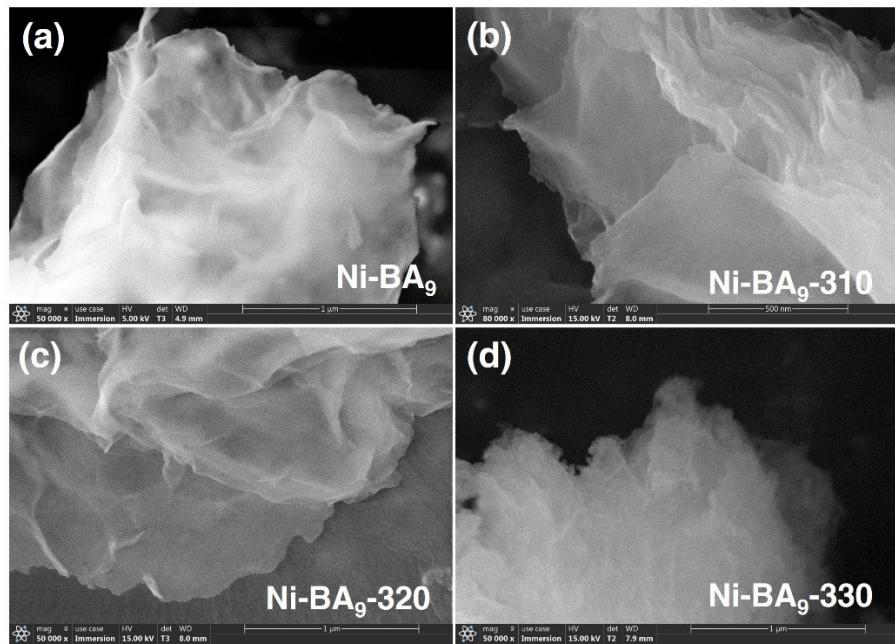

The samples were examined by powder X-ray diffraction (PXRD) on a high-resolution powder X-ray diffractometer (DX-2700) with Cu K α as the radiation source. SEM images were obtained using FIB-SEM (Thermo Scientific Helios 5CX). The ^1H NMR were recorded using Bruker AVANCE III Ascend 500 MHz NMR spectrometer. For the ^1H NMR analyses, 5 mg of sample was dispersed in 30 μL of HCl. After sonicating for 10 min, 500 μL of DMSO (d6) was added to dissolve the sample. The morphology was studied by field emission transmission electron microscopy (TEM, FEI TECNAI G2 20) and scanning transmission electron microscopy (STEM, FEI TECNAI G2 F20). X-ray photoelectron spectroscopy (XPS) was performed on Thermo Scientific Nexsa, and all binding energies were calibrated by the C 1s peak at 284.8 eV. FT-IR and in-situ FT-IR spectra were scanned with the FT-IR spectrometer (Nicolet iS50FT-IR). The electrochemical measurement was performed using an electrochemical workstation (CHI 760E) with a typical three-electrode system at room temperature.

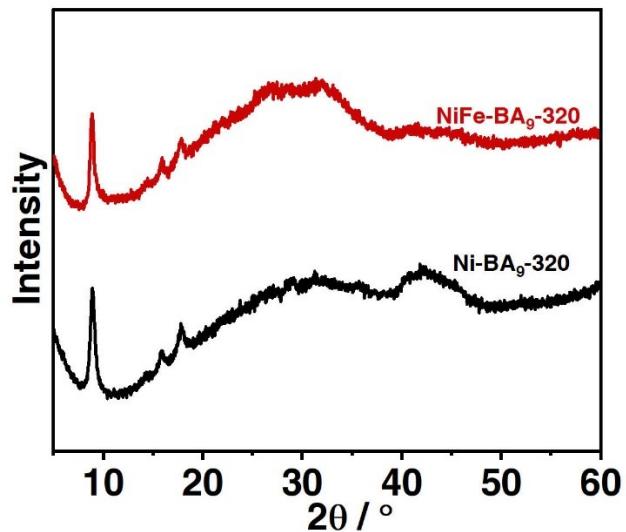
Electrochemical measurement

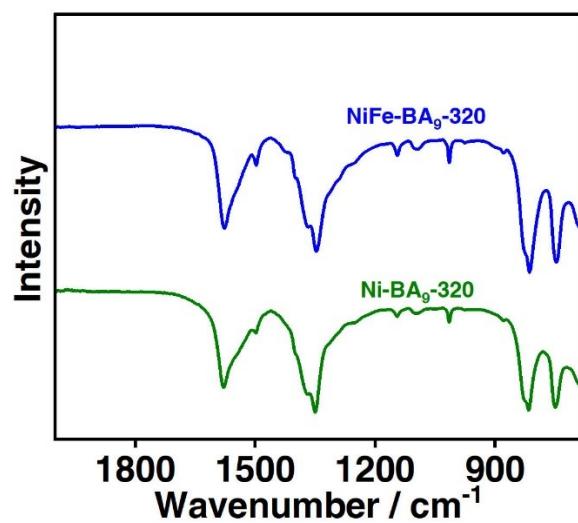

2 mg of sample was dispersed in a mixture of 200 μL H_2O , 300 μL ethanol and 20 μL 5wt% Nafion solution. The dispersion was sonicated for 1h to homogeneous disperse the powder. 10 μL of suspension was uniformed loaded on the carbon paper with an area of $0.4*0.5\text{ cm}^2$, which was used as the working electrode. The electrochemical tests were performed in a three-electrode electrochemical cell using a Pt wire and an Hg/HgO electrode as counter electrode and reference electrode, respectively. The oxygen evolution reaction (OER) was performed in the O_2 -saturated 1 M KOH aqueous solution. The linear sweep voltammetry (LSV) curves were recorded at a rate of 5 mV s^{-1} to minimize capacitive current. All potentials were converted to the reversible hydrogen electrode (RHE) with the following equations: $E_{(\text{RHE})} = E_{(\text{Hg}/\text{HgO})} + 0.05916 \times \text{pH} + 0.098$.

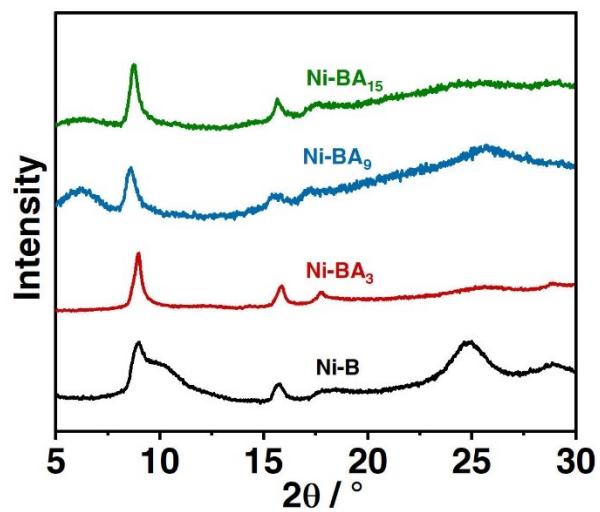

Fig. S1 XRD diffraction patterns of different samples.

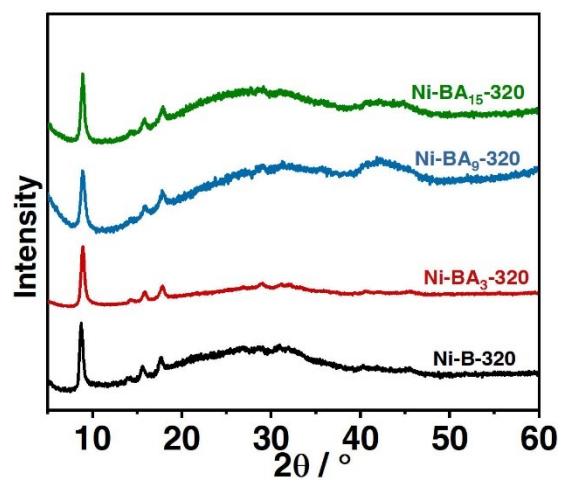

Fig. S2 The photo images of Ni-B, Ni-BA₉, Ni-BA₉-320 and NiFe-BA₉-320.

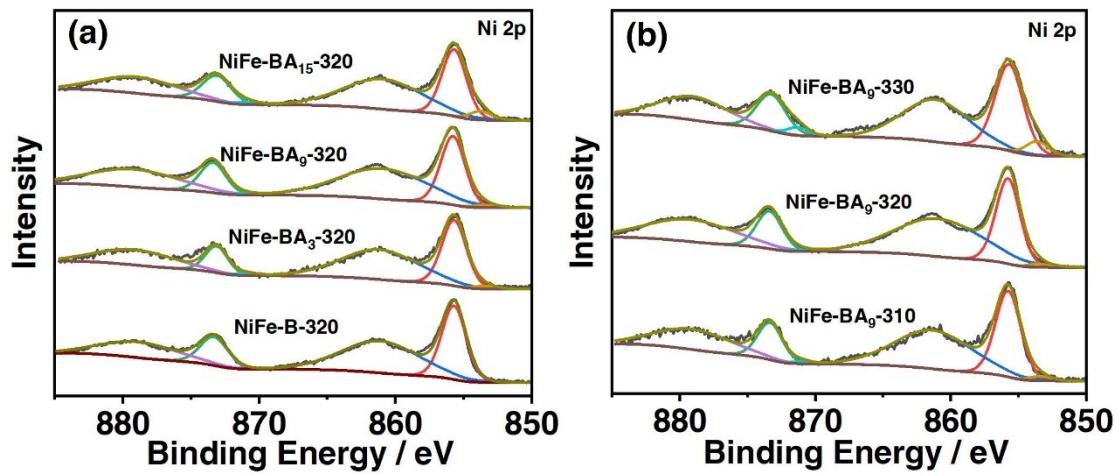

Fig. S3 The FT-IR spectra of Ni-B and Ni-BA₉.

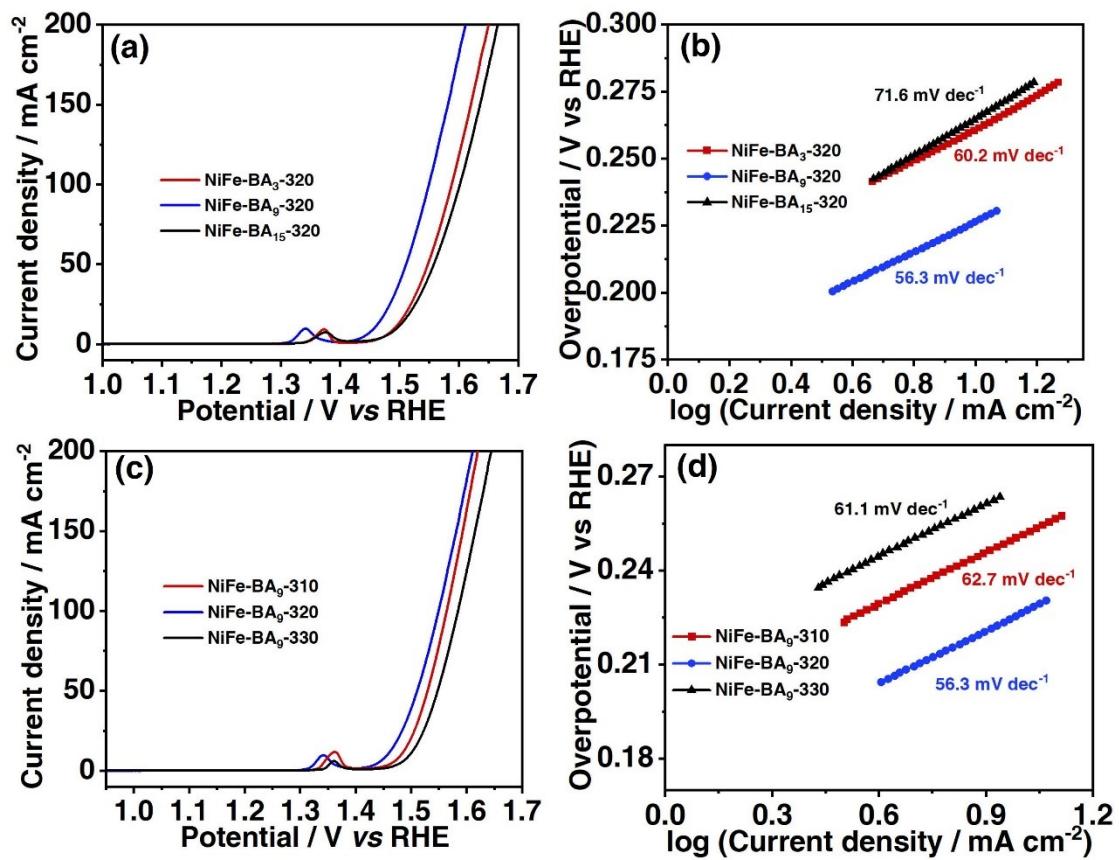

Fig. S4 The ^1H NMR of Ni-BA_9 and $\text{Ni-BA}_9\text{-}320$.

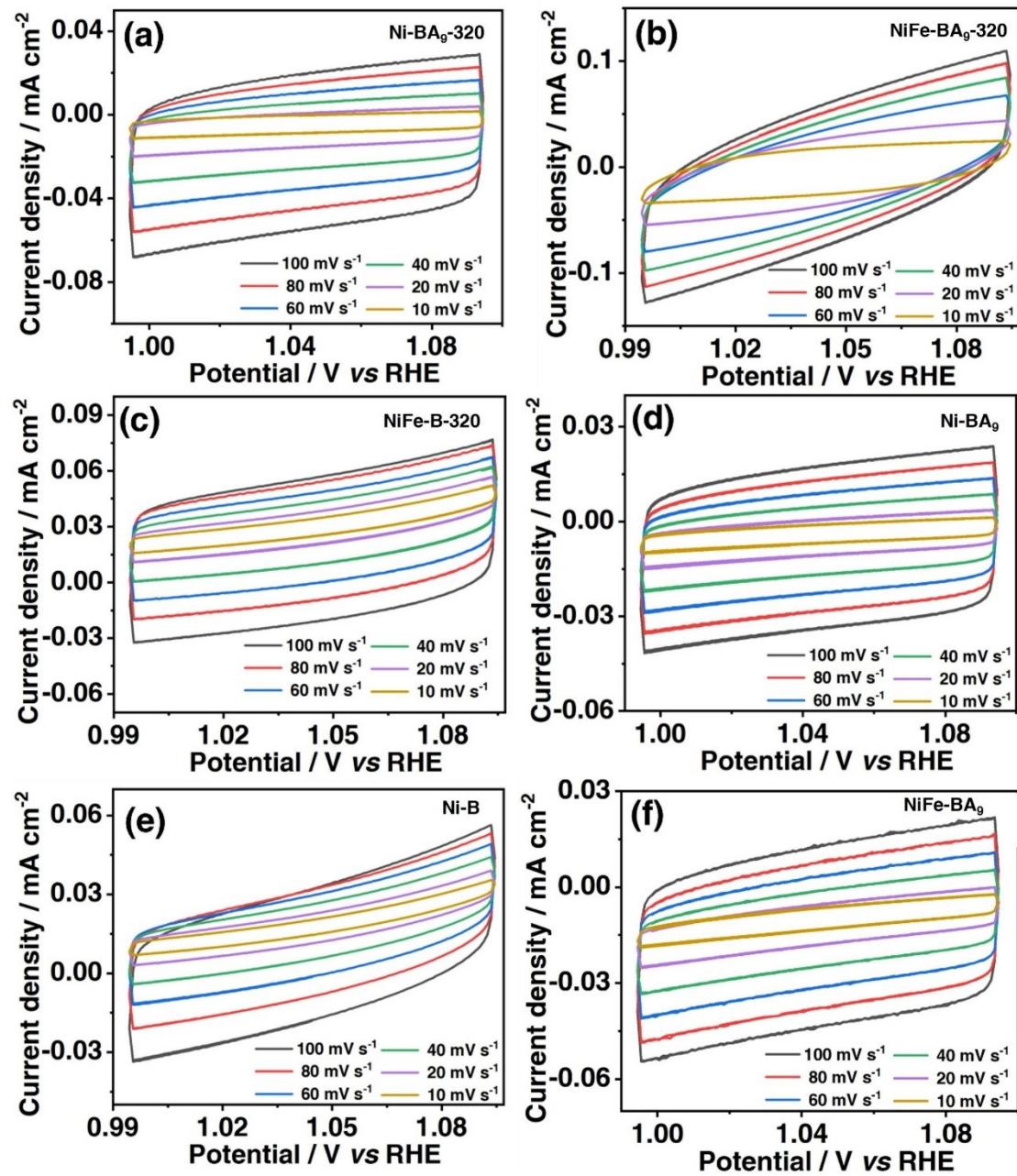

Fig. S5 XRD diffraction patterns of $\text{Ni-BA}_9\text{-T}$ prepared at different temperature.

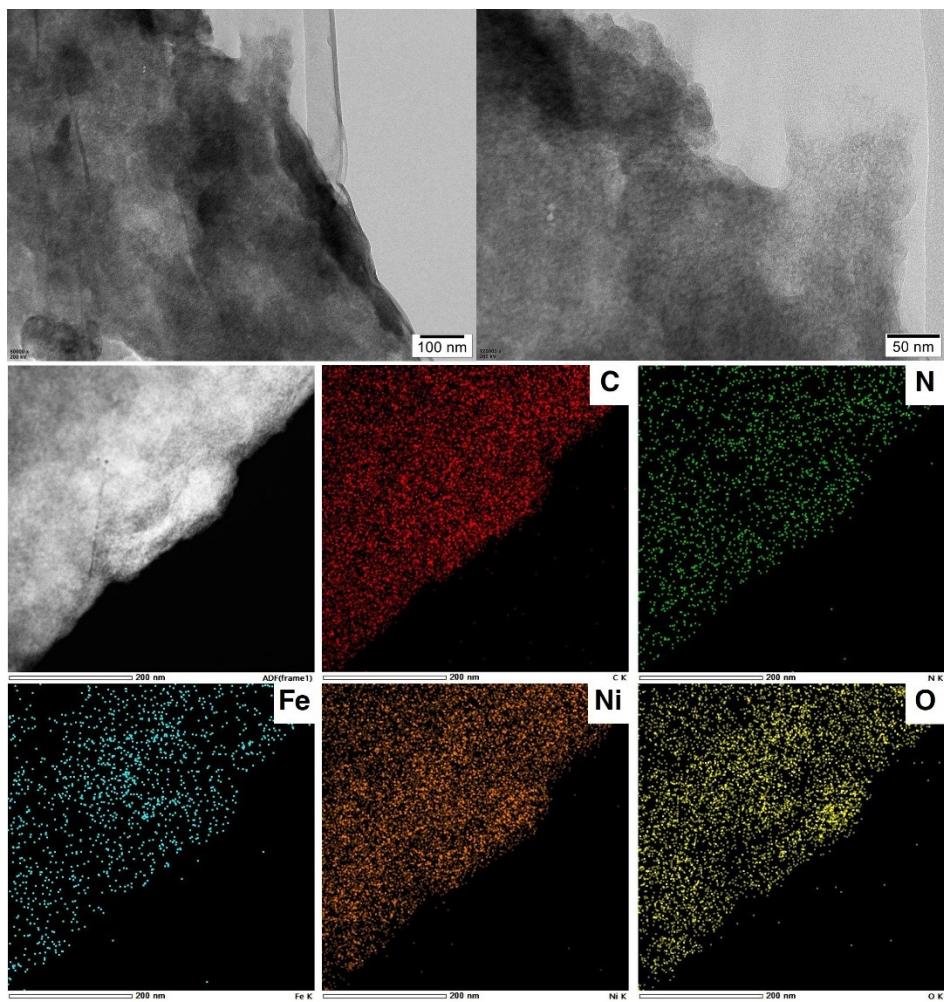

Fig. S6 SEM images of Ni-BA₉ after treating at temperatures ranging from 310°C to 330 °C.


Fig. S7 XRD diffraction patterns of Ni-BA₉-320 and NiFe-BA₉-320.


Fig. S8 Comparison of the FT-IR spectra between Ni-BA₉-320 and NiFe-BA₉-320.


Fig. S9 XRD diffraction patterns of Ni-BA_x with different amounts of ATA.


Fig. S10 XRD patterns of Ni-BA_x with different amounts of ATA prepared at 320 °C.


Fig. S11 XPS spectra in the region of Ni 2p for (a) NiFe-BA_x-320; and (b) NiFe-BA_x-t prepared at different temperature.

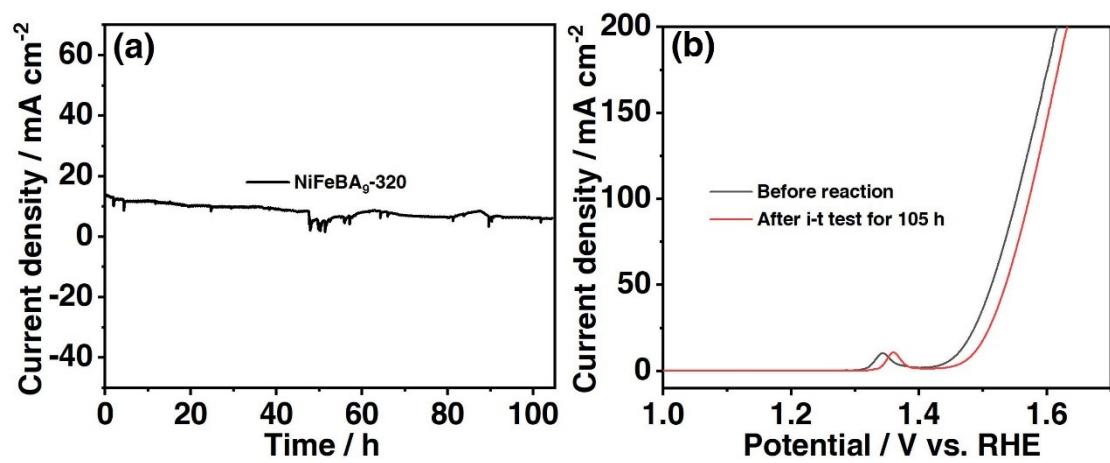

Fig. S12 (a) LSV and (b)Tafel curves of NiFe- BA_x -320; (c)LSV and (d)Tafel curves of NiFe- BA_9 -T.


Fig. S13 CV curves of a series samples at different scan rates.

Fig. S14 TEM and EDS mapping images of NiFe-BA₉-320 after OER.

Fig. S15 (a) Chronoamperometric curves of NiFe-BA₉-320 in 1.0 M KOH for 105 h; (b) LSV curves of NiFe-BA₉-320 before and after chronoamperometric test.

Fig. S16 LSV curves of NiFe-BA₉-320 in 1.0 M KOH and 1.0 M KOH+ 1.5 M NaCl.

Table S1 Comparison of the OER performance of as-obtained NiFe-BA₉-320 with previously reported MOFs-based electrocatalysts.

Electrocatalyst	Overpotential / mV at 10 mA cm ⁻²	Electrolyte (KOH)	Substrate	Reference
NiFe-BA₉-320	227	1 M KOH	CP	This work
Ni@CoO@Co-MOF	247	1 M KOH	NF	1
Ni ₂ Fe ₁ S _q -zbr-MOFs	230	1 M KOH	CP	2
Fe/Ni-MOF	188	1 M KOH	NF	3
NiBDC-FcCA/Fe foam	206	1 M KOH	Fe foam	4
Ni(DMBD)-MOF/NF	295	1 M KOH	NF	5
Ni _{0.5} Co _{0.5} -MOF-74	270	1 M KOH	GC	6
(Ni ₂ Co ₁) _{0.925} Fe _{0.075} -MOF-NF	257	1 M KOH	NF	7
NiFe ₂ O ₄ /NiFe LDH@Ni-BDC	251	0.85 M KOH	CP	8
Fe ₁₀ Ni-BA _{7.0} -T	286	1 M KOH	CP	9
Br-Ni-MOF(A)	306	1 M KOH	CP	10
CoCu-MOF NBs	271	1 M KOH	CP	11
IrNi@NiFe-MOFs	229	1 M KOH	GC	12
NiFe-THQ	272	1 M KOH	GC	13
CoNiMOF-mCNTs	306	1 M KOH	GC	14
CoFe-MOF-74	280	1 M KOH	GC	15
CoNi ₂ -MOF	240	0.1 M KOH	GC	16
HE(Ru,Mo)-MOFs	267	1 M KOH	GC	17
NiFe MOF	221	1 M KOH	NF	18
NiFc-MOF	270	1 M KOH	Graphite	19
(Fe,Ni)OOH-MOF/NF	229	1 M KOH	NF	20

GC: glass carbon electrode, NF: Nickel foam, CP: carbon paper

References

1. Y. R. Wang, A. Wang, Z. Z. Xue, L. Wang, X. Y. Li and G. M. Wang, *J. Mater. Chem. A* 2021, **9**, 22597.
2. S. Kandambeth, V. S. Kale, D. Fan, J. A. Bau, P.M. Bhatt, S. Zhou, A. Shkurenko, M. Rueping, G. Maurin, O. Shekhah and M. Eddaoudi, *Adv. Energy Mater.* 2022, **13**, 2202964.
3. D. Ye, L. H. Fu, Y. Tang, D. Zhang and T. Liu, *J. Mater. Chem. A*, 2025, **13**, 12057.
4. Y. Q. Zhang, M. Liu, L. T. Zhang, N. Lu, X. M. Wang, Z. G. Li, X. H. Zhang, N. Li, X. H. Bu, *Adv. Funct. Mater.* 2025, **35**, 2412406.
5. Y. Z. Liu, X. T. Li, S. F. Zhang, Z. L. Wang, Q. Wang, Y. H. He, W. H. Huang, Q. D. Sun, X. Y. Zhong, J. Hu, X. Y. Guo, Q. Lin, Z. Li, Y. Zhu, C. C. Chueh, C. L. Chen, Z. T. Xu and Z. L. Zhu, *Adv. Mater.* 2023, **35**, 2300945
6. S. L. Zhao, C. H. Tan, C. T. He, P. F. An, F. Xie, S. Jiang, Y. F. Zhu, K. H. Wu, B. W. Zhang, H. J. Li, J. Zhang, Y. Chen, S. Q. Liu, J. C. Dong and Z. Y. Tang, *Nat. Energy* 2020, **5**, 881.
7. Q. Z. Qian, Y. P. Li, Y. Liu, L. Yu, G. Q. Zhang, *Adv. Mater.* 2019, **31**, 1901139.
8. R. Y. Hou, X. X. Yang, L. H. Su, W. L. Cen, L. Ye and D. Sun, *Nanoscale* 2023, **15**, 18858-18863.
9. D. Sun, L.W. Wong, H. Y. Wong, K. H. Lai, L. Ye, X. Y. Xv, T. H. Ly, Q. M. Deng and J. Zhao, *Angew. Chem. Int. Ed.* 2023, **62**, e202216008.
10. W. R. Cheng, S. B. Xi, Z. P. Wu, D. Y. Luan and X. W. Lou, *Sci. Adv.* 2021, **7**, eabk0919.
11. W. C. Cheng, Z. P. Wu, D. Y. Luan, S. Q. Zang and X. W. Lou, *Angew. Chem. Int. Ed.* 2021, **60**, 26397
12. J. Z. Jia, Y. T. Wang, Y. Y. Cha, Z. W. Wang, J. F. Huang, D. N. Wang, H. Li, K. L. Guo, J. Li, J. E. Huang, Y. Tang and C. L. Xu, *Adv. Funct. Mater.* 2025, 2500568
13. L. Zhao, J. Yan, H. Huang, X. Du, H. Chen, X. He, W. Li, W. Fang, D. Wang, X. Zeng, J. Dong and Y. Liu, *Adv. Funct. Mater.* 2024, **34**, 2310902.
14. S. Yu, Y. Wu, Q. Xue, J. J. Zhu and Y. Z. Zhou, *J. Mater. Chem. A* 2022, **10**, 4936-

15. X. Zhao, B. Pattengale, D. Fan, Z. Zou, Y. Zhao, J. Du, J. Huang and C. Xu, *ACS Energy Lett.* 2018, **3**, 2520.
16. W. Zhou, D. D. Huang, Y. P. Wu, J. Zhao, T. Wu, J. Zhang, D. S. Li, C. H. Sun, P. Y. Feng and X. H. Bu, *Angew. Chem. Int. Ed.* 2019, **58**, 4227.
17. X. Q. Mu, M. Yu, X. Y. Liu, Y. R. Liao, F. J. Chen, H. Z. Pan, Z. Y. Chen, S. L. Liu, D. S. Wang and S. C. Mu, *ACS Energy Lett.* 2024, **9**, 5763-5770.
18. Y. Liu, X. Li, Q. Sun, Z. Wang, W.-H. Huang, X. Guo, Z. Fan, R. Ye, Y. Zhu, C.-C. Chueh, C.-L. Chen and Z. Zhu, *Small* 2022, **18**, 2201076.
19. J. Hu, Q. Xu, X. Wang, X. Huang, C. Zhou, Y. Ye, L. Zhang, H. Pang, *Carbon Energy* 2023, **5**, e315.
20. Y. B. Huang, H. J. Xie, Z. L. Gu, A. Q. Kong, J. W. Wang, W. Guo, H. T. Zhang, J. C. Liu, C. H. Sun and F. X. Bao, *App. Catal. B: Environ.* 2025, **371**, 125221.