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Experimental Section

1. Photocatalytic measurements

The photocatalytic hydrogen production measurement was conducted in a commercial test
system (Labsolar-6A, Beijing Perfect Light). Typically, 20 mg of photocatalyst and 50 mL of
sacrificial reagent Na,S (0.35 M) and Na,SO; (0.25 M) aqueous solution were added to a quartz
reactor. The light source was a 300 W Xenon lamp equipped with a filter (> 420 nm). In the
photocatalytic measurements, hydrogen was collected and detected by an on-line GC-9790 gas
chromatograph equipped with a thermal conductivity detector, which Argon was used as the
carrier gas. The apparent quantum efficiency (AQE) was tested with different irradiation light
by using various quartz bandpass filters. A Ray virtual radiation actinometer was used to record

the luminous flux of incident light.



2. Photoelectrochemical measurements

Photoelectrochemical measurements were used by CHI660 electrochemical workstation with a
three-electrode cell. The photoanodes were made by coating photocatalysts on a FTO glass.
Particularly, 20 mg of catalyst powder and 20 mg polyethylene glycol were added into 2 mL of
ethanol to form a slurry. Then, the slurry was coated on a 2 cm x 1 cm FTO glass via a scraping
coating method, which the active area of the electrode was kept as 1 cm % 1 cm. The coated
electrode was dried at 200 °C in argon flow for 0.5 h. In the photoelectrochemical tests, the 1
cm x 1 cm Pt electrode was used counter electrode, and an Ag/AgCl electrode was used as the
reference electrode. 0.5 M Na,SO,4 aqueous solution was used as the electrolyte, and 300 W
Xenon lamp was served as the simulated solar energy source. Electrochemical impedance
spectroscopy (EIS) was acquired in dark under alternative current voltage (10 mV). It was tested
with a direct current bias of 0.6 V against Ag/AgCl with a frequency range of 107! to 10° Hz.
3. Photothermal measurement

The photothermal measurement of as-prepared powder were carried out as follows, 40 mg of
sample was loaded on a white paper and initial temperature was controlled at room temperature
(27 °C). A 300 W Xenon lamp (100 mW/cm?) was used as a light source. The temperature of
the sample was measured using the infrared (IR) thermal camera. The photothermal
measurements of as-prepared aqueous samples were carried out in the cuvette, and the
temperature of sample was measured using the IR thermal camera and thermocouple. To
evaluate the photothermal conversion of Ag,S/Cu,.,S, the aqueous solution (1.3 mL, 100
ug/mL) was irradiated by an 808 nm laser (1.0 W/cm?). The temperature variation of the
different samples was continuously monitored by an infrared (IR) thermal camera and

thermocouple. The photothermal conversion efficiency (PCE) was calculated by the formula:
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where /2 and s are the heat transfer coefficient and surface area of the container. 7, 7, and

surr

O, are the maximum steady-state temperature, temperature of the surroundings, heat
generated by the water and quartz cell under laser irradiation, respectively. 7 and A, are the

incident laser intensity and absorbance at excitation wavelength, respectively.

Moreover, formula (2) was used.
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where m,, , are the total mass of H,O, C,, , denotes the specific heat capacity of H,O, and 7,

is the time constant of Ag,S/Cu,_,S.

Then, formula (3) was used for the cooling period (i.e., after removing the 808 nm light

source).
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where T is the highest steady-state temperature of Ag,S/Cu,.,S, T, is the ambient

temperature, 7' represents the real-time temperature. Thus, the time constant quantity was

calculated from the linear regression curve in cooling period of Ag,S/Cu,.S.

4. TAS measurements

TAS measurements were performed on a pump-probe system (Femto-TA100), and all
experiments were performed at ~24 °C. The aqueous solution samples (1 mg/mL), including
Ag,S, Cu,S, and Ag,S/Cu,.S were deposited on quartz glasses (1 x 1 cm) and dried at 70 °C
for further tests. The fundamental pulses were produced by a Ti: sapphire laser from Coherent
(Astrella, 800 nm, 35 fs, 7 mJ/pulse, and 1 kHz repetition). The fundamental beam was focused
into a CaF; or YAG crystal to produce a white light continuum probe beam with a time window
limit of 3 ns. A fraction of the fundamental beam was utilized to generate the 400 nm pump

beam through the optical parametric amplifier.

5. Sample Characterization

Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) measurements
were performed on Talos F200S instruments. Scanning electron microscopy (SEM)
characterization was performed on GeminiSEM 300. X-ray photoelectron spectroscopy (XPS)
measurement was performed on Thermo Scientific ESCALAB Xi+ system. X-ray diffraction
(XRD) was measured by a Bruker D8 ADVANCE X-ray diffractometer with Cu Ka radiation.
UV-Vis-NIR absorption spectra were recorded on spectrophotometer (lambda 1050). In-situ
surface potential images were conducted at an atomic force microscopy (Bruker Dimension

Icon, German) operating in KPFM mode.



Figure S1. Low-magnification SEM image of Ag nanowires.



Figure S2. High-angle annular dark-field scanning TEM (HAADF-STEM) and energy-
dispersive X-ray spectroscopy (EDS) mappings of Ag,S/Cu,.S heterostructures.
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Figure S3. XRD patterns of the Ag,S (a) and Cu,S (b).
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Figure S4. XPS survey of Ag,S/Cu,_.S nanotubes.
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Figure S5. Valence band with respect to the Fermi level for Cu,_.S (a) and Ag;S (b).
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Figure S6. Calculated band structures for Ag,S and Cu,_.S based on the UPS and DRS results
(vs. NHE).
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Figure S7. Calculated band structures (a, b) and Fermi levels (c, d) via DFT for Ag,S and
Cuz_xS.
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Figure S8. Photothermal heating curves for Ag,S/Cu, .S and components under a 980 nm laser
(1.0 W/cm?) irradiation. The time constant and PCE are calculated as 483.84 s and 48.57%,

respectively.
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Figure S9. XRD patterns of Ag,S/Cu,.S nanotubes before and after reaction, the insert is the
SEM image of Ag,S/Cu,.S nanotubes after reaction. The new peaks (labeled with red arrows)

at 31.3°,37.4°,38.9°, and 46.9° can be assigned to the (-112), (013), (-103), and (004) phases
of AgZS
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Figure S10. EIS plots of Ag,S/Cu,.S and components tested at 5 and 40 °C.
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Figure S11. TA spectra of Cu,S (a) in the region of 1050-1640 nm) and Ag,S (b) in the
region of 500-900 nm.
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Table S1. Comparison of the photothermal conversion performance of defective Ag,S/Cu,.S

with similar materials.

Materials PCE (%) Reference

AgrS/Cuy,S 48.6 This work
Ag,S NPs 38.5 (1)
Ag—AgS 34.1 )
BSA-Ag,S 18.9 3)
Ag,S@MSN-TGF 38.2 4)
Cu,S-Ag,S 48.6 (5)
Agy/Cu,S 44.0 6)
Ag,S@WS, 33.0 %
Fe;04@Cuy S 34.1 )
Cu,.S/CdS/Bi,S; 31.0 )

Cu, ,S-PEG@HA 30.5 (10)
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