

Supporting Information

Plasmon-induced Charge Separation and Accumulation in $\text{Ag}_2\text{S}/\text{Cu}_{2-x}\text{S}$ S-Scheme Junction for Wide-Light-Driven Photothermal-Assisted Photocatalysis

*Wen-Xi Xia^a, Yi-Xin Dong^a, Zhe-Yuan Chen^a, Hai-Ting Li^a, You-Long Chen^b, Qing-Bo Liu^a, Si-Jing Ding^c, Qu-Quan Wang ^{*d, e}, Liang Ma^a **

^a Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, 430205, P. R. China.

^b State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Hefei 230037, P. R. China.

^c School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan, 430074, P. R. China.

^d Guangdong Provincial Key Laboratory of Advanced Thermoelectric Materials and Device Physics, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.

^e Quantum Science Center of Guangdong–Hong Kong–Macao Greater Bay Area (Guangdong), Shenzhen 518045, China

Experimental Section

1. Photocatalytic measurements

The photocatalytic hydrogen production measurement was conducted in a commercial test system (Labsolar-6A, Beijing Perfect Light). Typically, 20 mg of photocatalyst and 50 mL of sacrificial reagent Na_2S (0.35 M) and Na_2SO_3 (0.25 M) aqueous solution were added to a quartz reactor. The light source was a 300 W Xenon lamp equipped with a filter (> 420 nm). In the photocatalytic measurements, hydrogen was collected and detected by an on-line GC-9790 gas chromatograph equipped with a thermal conductivity detector, which Argon was used as the carrier gas. The apparent quantum efficiency (AQE) was tested with different irradiation light by using various quartz bandpass filters. A Ray virtual radiation actinometer was used to record the luminous flux of incident light.

2. Photoelectrochemical measurements

Photoelectrochemical measurements were used by CHI660 electrochemical workstation with a three-electrode cell. The photoanodes were made by coating photocatalysts on a FTO glass. Particularly, 20 mg of catalyst powder and 20 mg polyethylene glycol were added into 2 mL of ethanol to form a slurry. Then, the slurry was coated on a 2 cm × 1 cm FTO glass via a scraping coating method, which the active area of the electrode was kept as 1 cm × 1 cm. The coated electrode was dried at 200 °C in argon flow for 0.5 h. In the photoelectrochemical tests, the 1 cm × 1 cm Pt electrode was used counter electrode, and an Ag/AgCl electrode was used as the reference electrode. 0.5 M Na₂SO₄ aqueous solution was used as the electrolyte, and 300 W Xenon lamp was served as the simulated solar energy source. Electrochemical impedance spectroscopy (EIS) was acquired in dark under alternative current voltage (10 mV). It was tested with a direct current bias of 0.6 V against Ag/AgCl with a frequency range of 10⁻¹ to 10⁵ Hz.

3. Photothermal measurement

The photothermal measurement of as-prepared powder were carried out as follows, 40 mg of sample was loaded on a white paper and initial temperature was controlled at room temperature (27 °C). A 300 W Xenon lamp (100 mW/cm²) was used as a light source. The temperature of the sample was measured using the infrared (IR) thermal camera. The photothermal measurements of as-prepared aqueous samples were carried out in the cuvette, and the temperature of sample was measured using the IR thermal camera and thermocouple. To evaluate the photothermal conversion of Ag₂S/Cu_{2-x}S, the aqueous solution (1.3 mL, 100 µg/mL) was irradiated by an 808 nm laser (1.0 W/cm²). The temperature variation of the different samples was continuously monitored by an infrared (IR) thermal camera and thermocouple. The photothermal conversion efficiency (PCE) was calculated by the formula:

$$\eta = \frac{hs(T_{\max} - T_{\text{surr}}) - Q_{\text{dis}}}{I(1 - 10^{-A_{\lambda}})} \quad (1)$$

where h and s are the heat transfer coefficient and surface area of the container. T_{\max} , T_{surr} , and Q_{dis} are the maximum steady-state temperature, temperature of the surroundings, heat generated by the water and quartz cell under laser irradiation, respectively. I and A_{λ} are the incident laser intensity and absorbance at excitation wavelength, respectively.

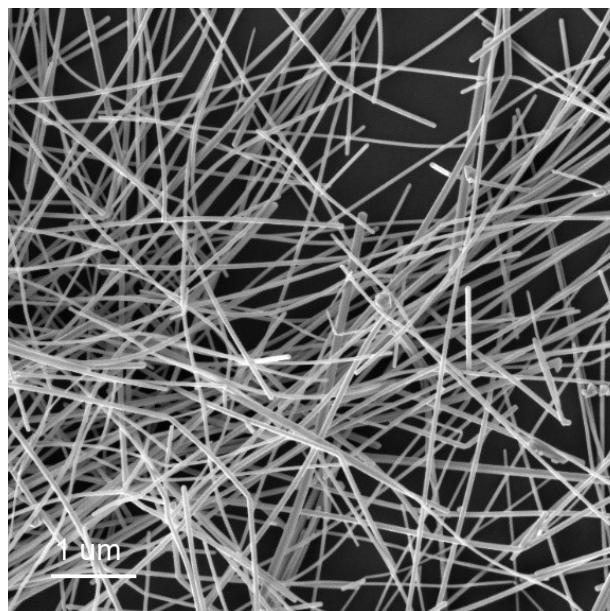
Moreover, formula (2) was used.

$$hs = \frac{m_{H_2O}C_{H_2O}}{\tau_S} \quad (2)$$

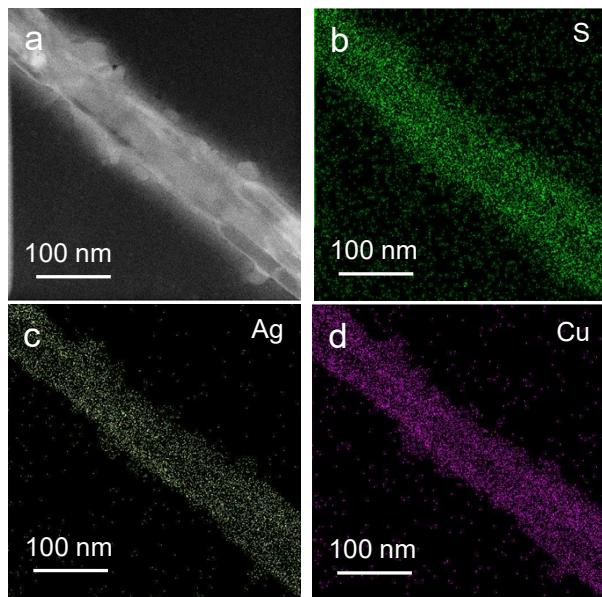
where m_{H_2O} are the total mass of H_2O , C_{H_2O} denotes the specific heat capacity of H_2O , and τ_s is the time constant of $Ag_2S/Cu_{2-x}S$.

Then, formula (3) was used for the cooling period (i.e., after removing the 808 nm light source).

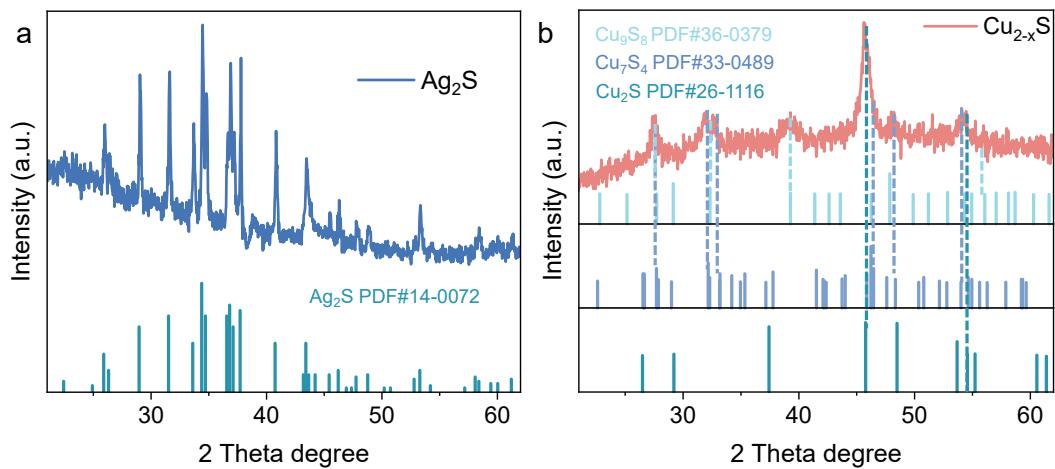
$$t = -\tau_s \times \ln \theta = -\ln \frac{T - T_{surr}}{T_{\max} - T_{surr}} \quad (3)$$

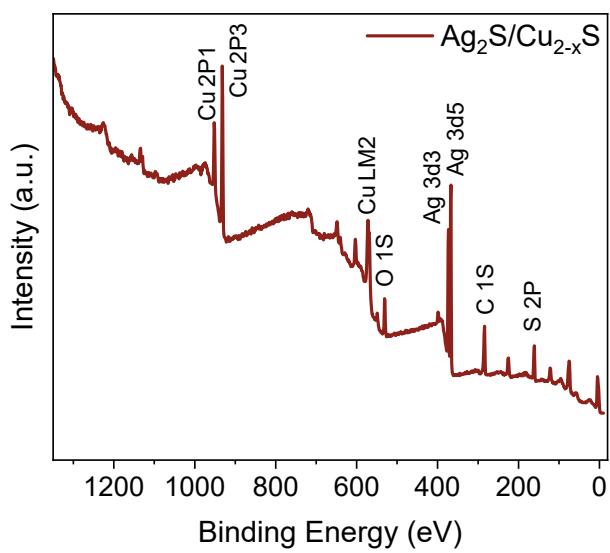

where T_{\max} is the highest steady-state temperature of $Ag_2S/Cu_{2-x}S$, T_{surr} is the ambient temperature, T represents the real-time temperature. Thus, the time constant quantity was calculated from the linear regression curve in cooling period of $Ag_2S/Cu_{2-x}S$.

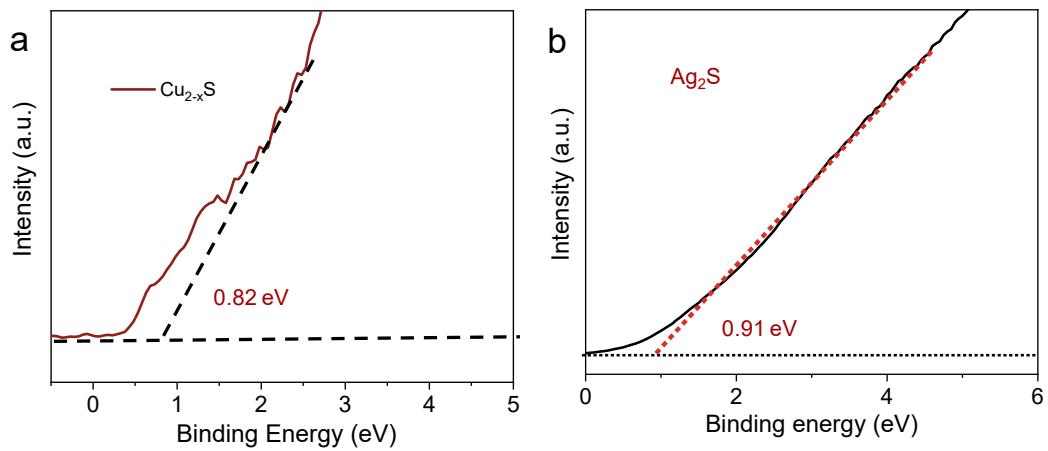
4. TAS measurements

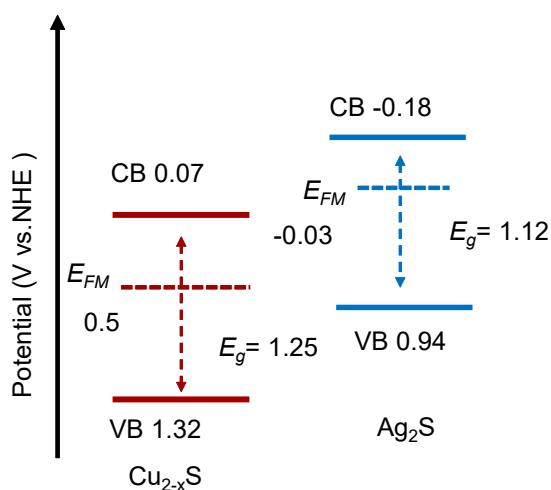

TAS measurements were performed on a pump-probe system (Femto-TA100), and all experiments were performed at ~ 24 °C. The aqueous solution samples (1 mg/mL), including Ag_2S , $Cu_{2-x}S$, and $Ag_2S/Cu_{2-x}S$ were deposited on quartz glasses (1 x 1 cm) and dried at 70 °C for further tests. The fundamental pulses were produced by a Ti: sapphire laser from Coherent (Astrella, 800 nm, 35 fs, 7 mJ/pulse, and 1 kHz repetition). The fundamental beam was focused into a CaF_2 or YAG crystal to produce a white light continuum probe beam with a time window limit of 3 ns. A fraction of the fundamental beam was utilized to generate the 400 nm pump beam through the optical parametric amplifier.

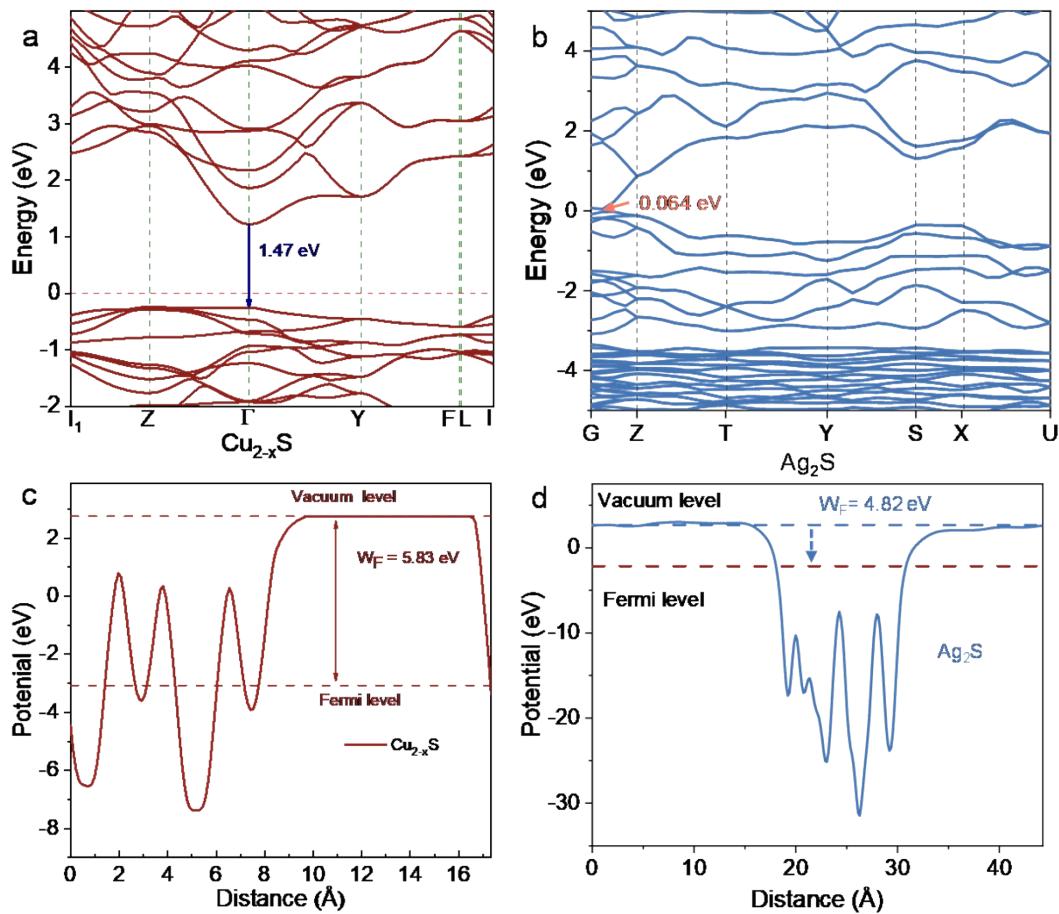
5. Sample Characterization

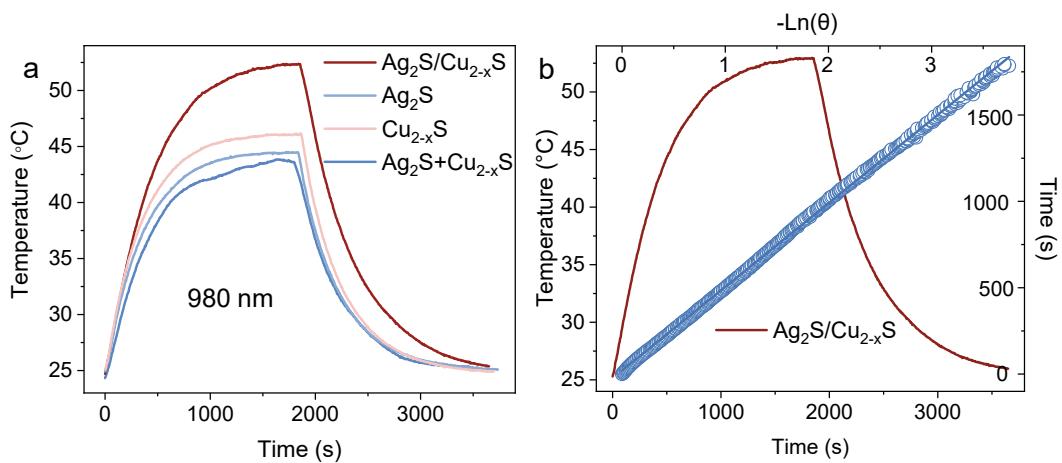

Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) measurements were performed on Talos F200S instruments. Scanning electron microscopy (SEM) characterization was performed on GeminiSEM 300. X-ray photoelectron spectroscopy (XPS) measurement was performed on Thermo Scientific ESCALAB Xi+ system. X-ray diffraction (XRD) was measured by a Bruker D8 ADVANCE X-ray diffractometer with $Cu K\alpha$ radiation. UV-Vis-NIR absorption spectra were recorded on spectrophotometer (lambda 1050). *In-situ* surface potential images were conducted at an atomic force microscopy (Bruker Dimension Icon, German) operating in KPFM mode.

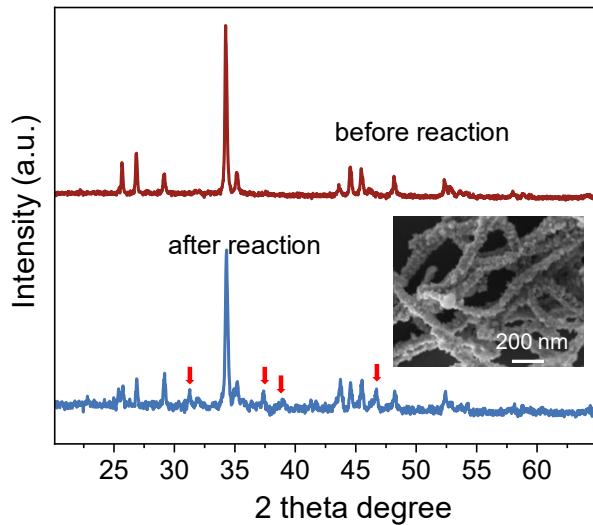

Figure S1. Low-magnification SEM image of Ag nanowires.

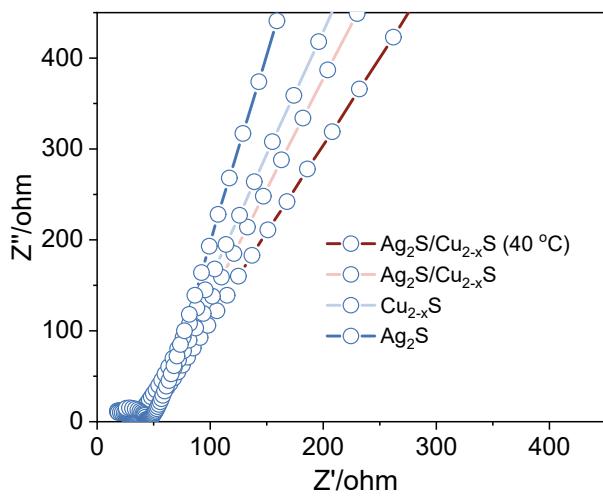

Figure S2. High-angle annular dark-field scanning TEM (HAADF-STEM) and energy-dispersive X-ray spectroscopy (EDS) mappings of $\text{Ag}_2\text{S}/\text{Cu}_{2-x}\text{S}$ heterostructures.


Figure S3. XRD patterns of the Ag_2S (a) and Cu_{2-x}S (b).


Figure S4. XPS survey of $\text{Ag}_2\text{S}/\text{Cu}_{2-x}\text{S}$ nanotubes.


Figure S5. Valence band with respect to the Fermi level for Cu_{2-x}S (a) and Ag_2S (b).


Figure S6. Calculated band structures for Ag_2S and Cu_{2-x}S based on the UPS and DRS results (vs. NHE).


Figure S7. Calculated band structures (a, b) and Fermi levels (c, d) via DFT for Ag_2S and Cu_{2-x}S .

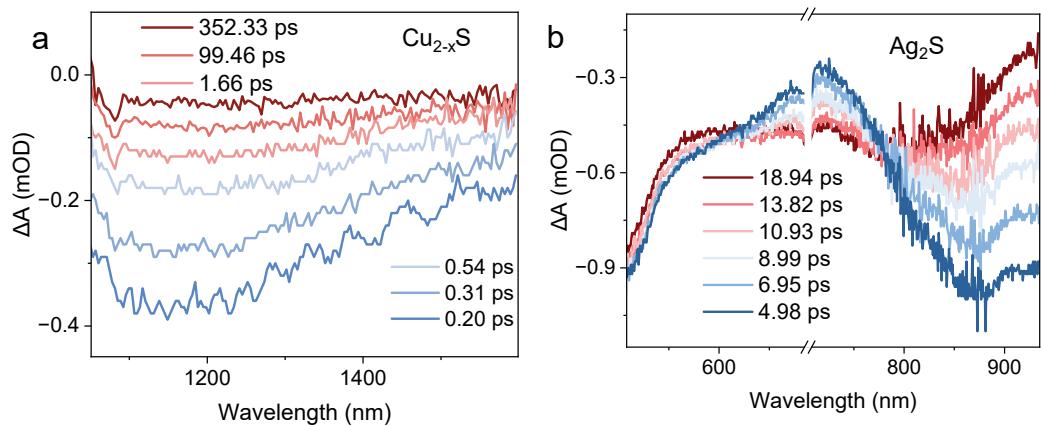

Figure S8. Photothermal heating curves for $\text{Ag}_2\text{S}/\text{Cu}_{2-x}\text{S}$ and components under a 980 nm laser ($1.0 \text{ W}/\text{cm}^2$) irradiation. The time constant and PCE are calculated as 483.84 s and 48.57%, respectively.

Figure S9. XRD patterns of $\text{Ag}_2\text{S}/\text{Cu}_{2-x}\text{S}$ nanotubes before and after reaction, the insert is the SEM image of $\text{Ag}_2\text{S}/\text{Cu}_{2-x}\text{S}$ nanotubes after reaction. The new peaks (labeled with red arrows) at 31.3° , 37.4° , 38.9° , and 46.9° can be assigned to the (-112) , (013) , (-103) , and (004) phases of Ag_2S .

Figure S10. EIS plots of $\text{Ag}_2\text{S}/\text{Cu}_{2-x}\text{S}$ and components tested at 5 and 40°C .

Figure S11. TA spectra of Cu_{2-x}S (a) in the region of 1050-1640 nm and Ag_2S (b) in the region of 500-900 nm.

Table S1. Comparison of the photothermal conversion performance of defective $\text{Ag}_2\text{S}/\text{Cu}_{2-x}\text{S}$ with similar materials.

Materials	PCE (%)	Reference
$\text{Ag}_2\text{S}/\text{Cu}_{2-x}\text{S}$	48.6	This work
Ag_2S NPs	38.5	(1)
$\text{Ag}-\text{Ag}_2\text{S}$	34.1	(2)
BSA- Ag_2S	18.9	(3)
$\text{Ag}_2\text{S}@\text{MSN-TGF}$	38.2	(4)
$\text{Cu}_x\text{S}-\text{Ag}_2\text{S}$	48.6	(5)
$\text{Ag}_{2-x}/\text{Cu}_x\text{S}$	44.0	(6)
$\text{Ag}_2\text{S}@\text{WS}_2$	33.0	(7)
$\text{Fe}_3\text{O}_4@\text{Cu}_{2-x}\text{S}$	34.1	(8)
$\text{Cu}_{2-x}\text{S}/\text{CdS}/\text{Bi}_2\text{S}_3$	31.0	(9)
$\text{Cu}_{2-x}\text{S-PEG}@\text{HA}$	30.5	(10)

References

- [1] S. Zhu, W. Song, Y. He, Y. Wang, X. Li, Y. Wu, X. Meng, C. Lin, W. Wang, H. Wang, S. Huang, *ACS Appl. Mater. Interfaces* 2025, 17, 37465.
- [2] P. Zang, Y. Du, C. Yu, D. Yang, S. Gai, L. Feng, J. Lin, *Chem. Mater.* 2023, 35(18), 7770-7780.
- [3] J. Zhao, Q. Zhang, W. Liu, G. Shan, X. Wang, *Colloid Surface. B.* 2022, 211, 112295.
- [4] W. Li, S. Liu, S. Dong, S. Gai, F. Zhang, Y. Dong, D. Yang, F. He, L. Zhong, P. Yang, *Chem. Eng. J.* 2021, 405, 127027.
- [5] P. Zang, C. Yu, R. Zhang, D. Yang, S. Gai, B. Liu, J. Lin, *Adv. Mater.* 2024, 36(24), 2400416.
- [6] Y. Zhao, M. Song, X. Yang, J. Yang, C. Du, G. Wang, J. Yi, G. Shan, D. Li, L. Liu, D. Yan, *Chem. Eng. J.* 2020, 399, 125777.
- [7] Y. Lin, D. Han, Y. Li, L. Tan, X. Liu, Z. Cui, X. Yang, Z. Li, Y. Liang, S. Zhu, S. Wu, *ACS Sustainable Chem. Eng.* 2019, 7, 14982.
- [8] B. Wang, T. Peng, Z. Jiang, L. Shen, J. Dong, Z. Song, J. Qu, X. Dai, *Talanta*, 2025, 284, 127189.
- [9] M. Guo, T. Zhao, Z. Xing, Y. Qiu, K. Pan, Z. Li, S. Yang, W. Zhou, *ACS Appl. Mater. Interfaces* 2020, 12, 40328.
- [10] X. Gao, M. Wei, D. Ma, X. Yang, Y. Zhang, X. Zhou, L. Li, Y. Deng, W. Yang, *Adv. Funct. Mater.* 2021, 31, 2106700.