

Defect Engineering in Carbon Skeletons toward Precise Edge-Nitrogen Doping for Efficient Electrochemical Energy Storage

Yi Yang*, Qiu-xiang Chen, Xing-yue Huang, Huan Liu, Tian Xia, You-bing Li, Jin-yong Mo*

College of Materials Science and Engineering, Chongqing University of Technology, Chongqing,
People's Republic of China

*E-mail: yiyang@cqut.edu.cn; jinyong@cqut.edu.cn

Calculation of capacitive contribution

The potential-dependent current of an electrode typically consists of two components: a capacitive contribution and a diffusion-controlled one. The capacitive response is rapid and originates from electric double-layer charging and surface-confined Faradaic reactions occurring within a shallow region of the electrode. In contrast, the diffusion-controlled contribution stems from bulk Faradaic processes governed by the diffusion of electroactive species inside the electrode. To further clarify the charge-storage kinetics, the power-law relationship and Dunn's method are used.

The power-law relationship: The current response from a cyclic voltammogram obeys the relationship of Equation S1

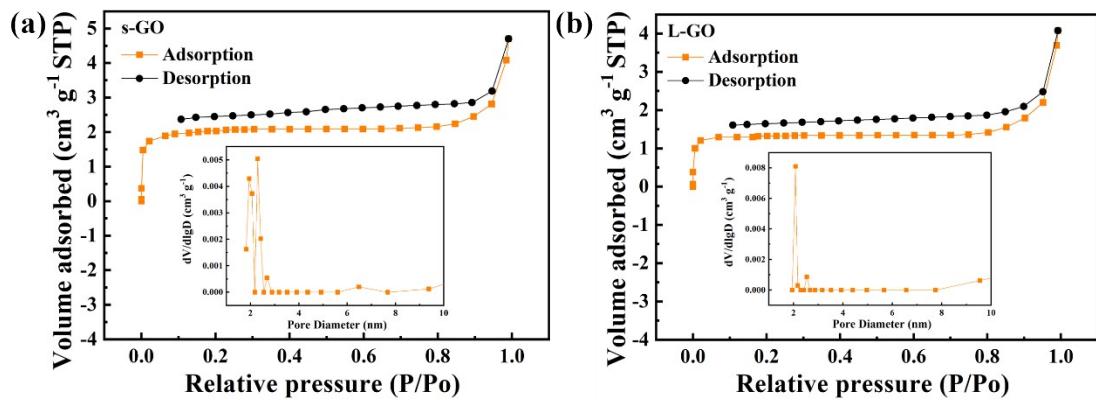
$$i = av^b \quad (S1)$$

Where a and b are adjustable parameters. For the ideal capacitive behavior, the current response is proportional to the scan rate ($b=1$). The current response of diffusion-limited process is proportional to the square root of the scan rate ($b=0.5$). The adjustable parameters of a and b can be calculated using the linear fitting of $\lg i$ and $\lg v$ with the following Equation S2.

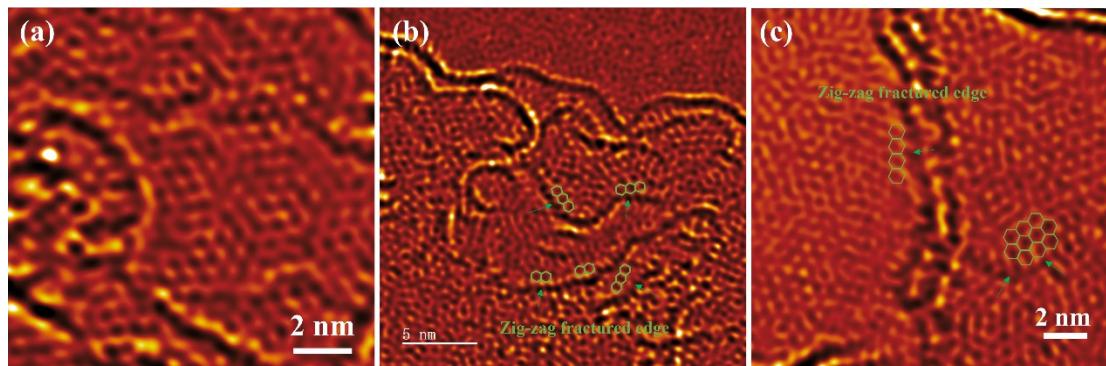
$$\lg i = \lg a + b \lg v \quad (S2)$$

Dunn's method: At a given potential, the total current response (i) can be quantitatively separated into these two components using the following expression:

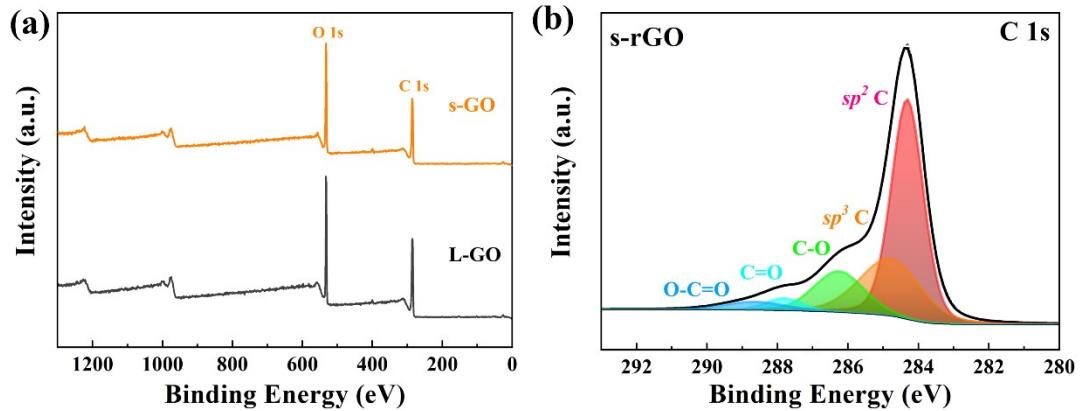
$$i = k_1 v + k_2 v^{1/2} \quad (S3)$$

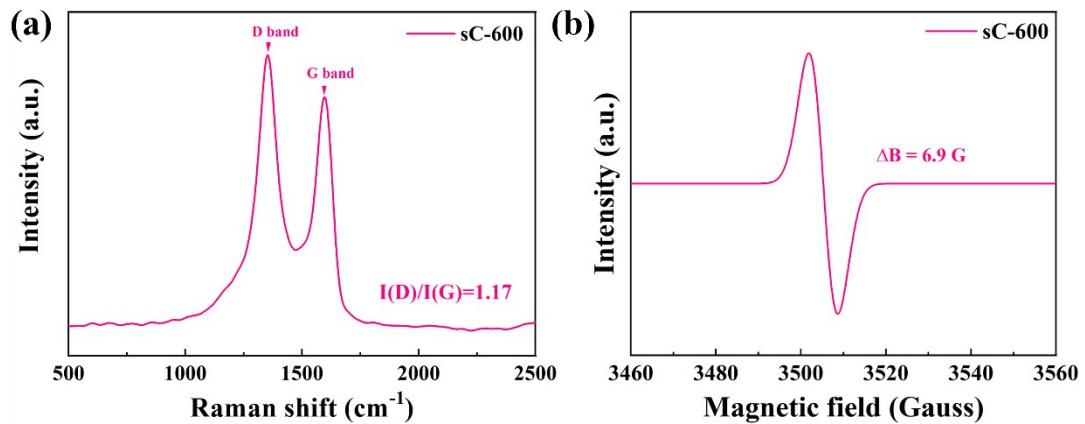

Where $k_1 v$ originates from the capacitive contribution, $k_2 v^{1/2}$ originates from the

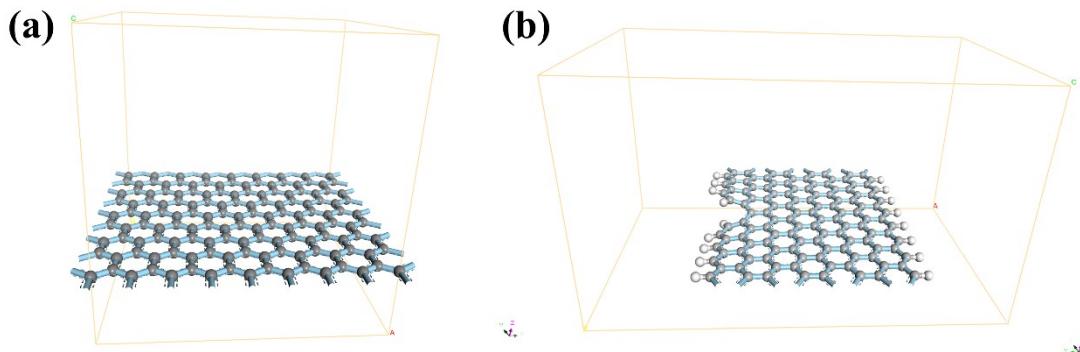
diffusion-limited Faradaic processes. By rearranging the above equation into the following Equation S4, the two components can be effectively decoupled based on the linear relationship between $i/v^{1/2}$ and $v^{1/2}$.

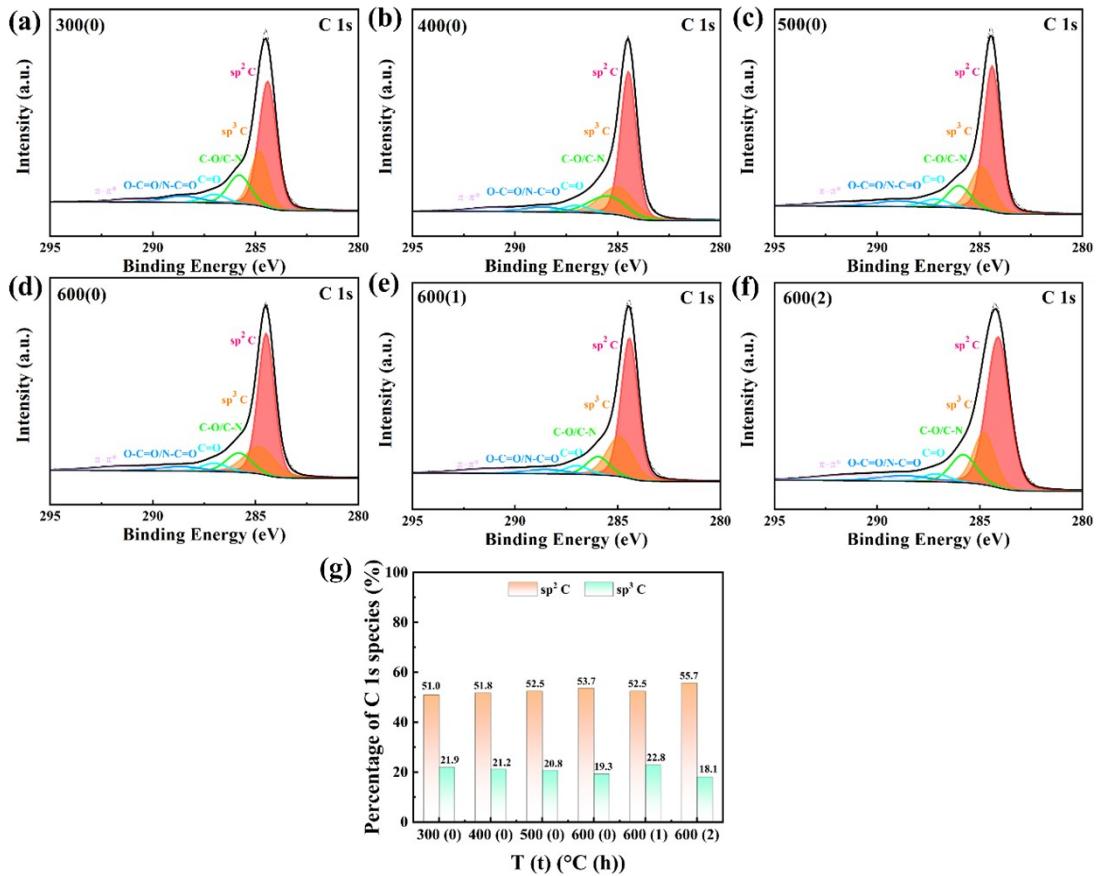

$$i/v^{1/2} = k_1 v^{1/2} + k_2 \quad (\text{S4})$$

From the slope and intercept of this linear fit, the constants k_1 and k_2 can be determined, enabling the quantitative estimation of the current contributions from capacitive and diffusion-controlled processes.


Supplementary tables and Figures


Fig. S1 Nitrogen adsorption-desorption isotherm of (a) s-GO and (b) L-GO. The inset shows the corresponding pore size distribution (BJH)


Fig. S2 AC-TEM images of s-GO carbon frameworks. (a) A clear version without annotations of the image shown in Fig. 2f. (b, c) AC-TEM images of different regions. The structure exhibited numerous crack boundaries and clearly defined zigzag carbon edges after ultrasonic treatment.


Fig. S3 (a) Full XPS spectra of s-GO and L-GO, displaying prominent peaks for oxygen (O 1s) and carbon (C 1s). (b) High-resolution XPS C 1s spectra of s-rGO.

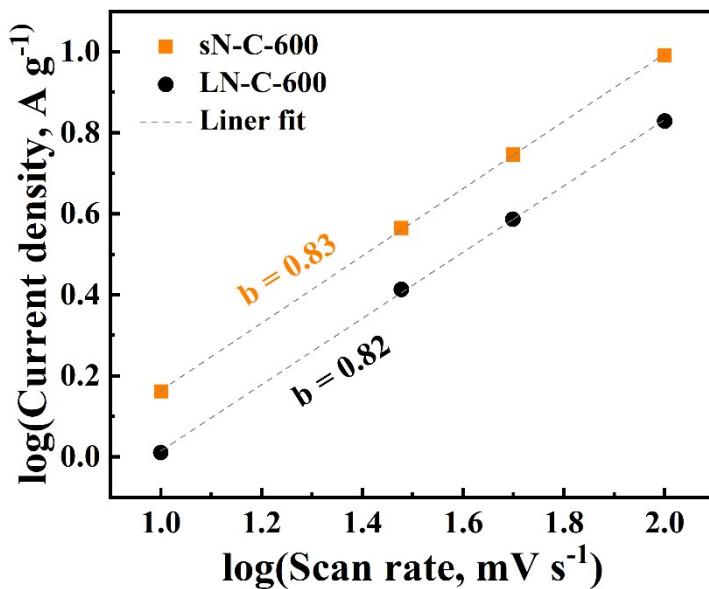

Fig. S4 (a) Raman and (b) EPR spectra of sC-600.

Fig. S5 The prototypical carbon skeleton models based on the graphene structure. (a) Boundary-free monolayer graphene. (b) Zigzag graphene nanoribbon (GNR) consisting of eight carbon atom rows terminated by hydrogen atoms, containing a carbon vacancy located at a zigzag edge.

Fig. S6 High-resolution XPS C 1s spectra of s-rGO treated at (a) 300 °C, (b) 400 °C, (c) 500 °C, (d) 600 °C, (e) 600 °C for 1 h and (f) 600 °C for 2 h (sN-C-600). (g) Percentage of sp^2 C and sp^3 C in above samples.

Fig. S7 Logarithmic plots of cathodic peak current density versus scan rate, and the corresponding b-values for sN-C-600 and LN-C-600 determined via the power-law relationship.

Table S1 Pore parameters of s-GO and L-GO.

Samples	Specific surface area (BET, $\text{m}^2 \text{ g}^{-1}$)	Average pore diameter (BJH, nm)	Pore volume ($\text{cm}^3 \text{ g}^{-1}$)
s-GO	7.75	13.01	0.0071
L-GO	5.25	20.45	0.0060

Table S2 Pore size distribution of s-GO and L-GO.

Pore Classification	Pore size distribution (nm)	Specific surface area ($\text{m}^2 \text{ g}^{-1}$)	
		s-GO	L-GO
Micropores (T- plot)	0.35-2	7.670	5.204
	2-10	0.936	0.375
Mesopores (BJH)	10-50	0.453	0.492
Macropores (BJH)	50-196	0.026	0.013

Table S3 Atomic percentages (at. %) of C and O in s-GO and L-GO, with proportions of different C 1s species.

Samples	C (at. %)	O (at. %)	C/O	C 1s species (%)				
				$\text{sp}^2 \text{ C}$	$\text{sp}^3 \text{ C}$	C-O	C=O	O-C=O
s-GO	67.4	32.6	2.07	29.2	17.6	40.7	7.9	4.6
L-GO	67.6	32.4	2.09	35.4	12.9	40.1	7.6	4.0

Table S4 Atomic percentages (at. %) of C and O in s-rGO, with proportions of different C 1s species.

Samples	C (at. %)	O (at. %)	C/O	C 1s species (%)				
				sp ² C	sp ³ C	C-O	C=O	O-C=O
s-rGO	81.7	18.3	4.46	51.6	25.9	15.2	3.4	3.9

Table S5 Proportions of different N 1s configurations in sN-C-Ts and LN-C-Ts (500-900).

Samples	N Configurations (%)				
	N-6	N-5	Edge-N	N-Q	Oxidic-N
sN-C-500	40.7	30.4	71.1	16.8	12.1
LN-C-500	44.2	27.4	71.6	14.2	14.2
sN-C-600	47.3	24.5	71.8	18.7	9.5
LN-C-600	29.2	33.6	62.8	27.5	9.6
sN-C-700	35.9	25.8	61.7	19.5	18.8
LN-C-700	18.0	39.7	57.7	36.4	5.9
sN-C-800	28.5	28.1	56.6	30.0	13.3
LN-C-800	21.7	29.3	51	37.3	11.7
sN-C-900	33.3	22.9	56.2	31.2	12.6
LN-C-900	25.1	25.0	50.1	36.4	13.5

Table S6 Atomic percentages (at. %) of C, O and N in sN-C-Ts (500-900).

Samples	C (at. %)	O (at. %)	N (at. %)	N/C (%)
sN-C-500	89.2	5.2	5.6	6.3
sN-C-600	89.0	4.7	6.3	7.1
sN-C-700	92.7	3.5	3.8	4.1
sN-C-800	93.2	3.3	3.5	3.8

sN-C-900	95.2	2.5	2.3	2.4
-----------------	------	-----	------------	------------

Table S7 Relative proportions of N species (including N-6, N-5, N-Q and Oxidic-N) and π^*/σ^* ratios for the edge and basal plane regions of sN-C-600.

	π^* States (%)					π^*/σ^*
	N-6	N-5	Edge-N	N-Q	Oxidic-N	
sN-C-600: Edge	39.0	11.3	50.3	16.0	33.7	4.1
sN-C-600: In-plane	7.5	23.2	30.7	11.1	58.2	0.5

Table S8 Atomic percentages (at. %) of C, O and N, and relative proportions of nitrogen configuration (including N-6, N-5, N-Q and Oxidic-N) in the samples of s-rGO treated at 300 °C, 400 °C, 500 °C, 600 °C, 600 °C for 1 h and 600 °C for 2 h (sN-C-600).

T (t) /°C (h)	N Configuration (%)									
	C (at. %)	O (at. %)	N (at. %)	N/C						N-6/ N-5
					N-6	N-5	Edge-N	N-Q	Oxidic-N	
300 (0)	87.4	9.6	3.0	3.4%	35.6	37.7	73.3	14	12.8	94.4%
400 (0)	87.8	9.0	3.2	3.6%	44.2	29.6	73.8	14.6	11.7	149.3%
500 (0)	89.6	6.8	3.6	4.0%	45.0	26.9	71.9	14	14.1	167.3%
600 (0)	89.7	6.3	4.0	4.4%	46.1	25.3	71.4	14.3	14.2	182.2%
600 (1)	89.4	5.7	4.9	5.5%	48.6	25.8	74.4	12.6	12.9	188.4%
600 (2)	89.0	4.7	6.3	7.1%	47.3	24.5	71.8	18.7	9.5	193.1%

Table S9 relative proportions of C 1s species (including sp² C, sp³ C, C-O/C-N, C=O, O-C=O/N-C=O and $\pi-\pi^*$) in the samples of s-rGO treated at 300 °C, 400 °C, 500 °C, 600 °C, 600 °C for 1 h and 600 °C for 2 h (sN-C-600).

Samples	C 1s Species (%)					
	sp ² C	sp ³ C	C-O/C-N	C=O	O-C=O/ N-C=O	$\pi-\pi^*$
300(0)	51.0%	21.9%	14.5%	4.6%	5.5%	2.5%
400(0)	51.8%	21.2%	14.4%	4.2%	4.3%	4.1%
500(0)	52.5%	20.8%	10.8%	4.7%	5.9%	5.3%
600(0)	53.7%	19.3%	11.0%	4.8%	4.3%	6.8%
600(1)	52.5%	22.8%	9.1%	4.5%	4.0%	7.1%
600(2)	55.7%	18.1%	11.4%	3.4%	4.7%	6.7%