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Figure S1. Powder X-ray diffraction patterns (CuKai) near the 400 peaks for the samples of

Cuz6TiaSbaGesSso-x (x =0, 0.5, 1.0, 1.5).



Table S1. Chemical compositions for the sintered samples of CuTi>SbaGe,Ss2-« (x = 0, 0.5, 1.0,
1.5). The standard deviation of the composition is given in the parentheses. Here, the total
composition of Cu, Ti, Sb, and Ge was assumed to be 34. The S compositions is much smaller
than the starting composition, which may be mainly due to the experimental/analytical error of

the energy dispersive X-ray spectroscopy.

X Cu Ti Sb Ge S
0 26.1(2) 1.9(1) 4.1(2) 1.8(3) 29.6(5)
0.5 26.2(2) 1.9(2) 4.2(1) 1.7(3) 29.3(3)
1.0 26.2(3) 1.8(1) 4.2(1) 1.8(3) 29.1(5)
1.5 26.1(3) 1.8(2) 4.2(1) 1.9(3) 28.5(4)

Table S2. Hole carrier concentration, n, and total thermal conductivity, k, at room temperature for

CUstisz4GEzng-X.

Sample n/10*cm3 K/WK?im™
x=0 3.49 2.63
x=0.5 2.37 1.74
x=1.0 1.77 1.42
“CuaeTi>SbaGesSs2” [1] 1.52 1.27
x=1.5 0.89 0.93

[1] Hagiwara, K. Suekuni, P. Lemoine, A. R. Supka, R. Chetty, E. Guilmeau, B. Raveau, M. Fornari, M.
Ohta, R. Al Rahal Al Orabi, H. Saito, K. Hashikuni and M. Ohtaki, Chemistry of Materials, 2021, 33,
3449-3456.
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Figure S2. Electronic band dispersion relations and element-projected density of states for

Cua6Ti2SbsS32 and CuysTioSbeS310 (see Fig. S3 for the structures).
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Figure S3. Relaxed structures of Cuz6Ti2SbeS32 and CuzsTi2SbeS310. For the latter, a sulphur atom

was removed from the 24 site.
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Figure S4. Orbital projected density of states of Sb for CuxsTi,SbeSs2 and CuaeTizSbeSs10. For the
latter, localized states appear at -3.0 eV and -3.6 eV.
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Figure S5. Temperature dependences of the lattice parameters and volume for Cu6Ti>SbgS315
colusite, NiSb, and NiSb,.
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Figure S6. Sintered samples composed of (a) Ni, Nig.sCuo.1Sb, and CuxsTi;SbaGe,Ss1.5 (col.) layers and
(b) Ni, Nio.sCoo.1Sb, and col. layers. Secondary electron images of one end of the devices are shown

at the lower panels.
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Figure S7. Secondary electron images near the interface between NiSb-based compounds and

Cuz6Ti2SbaGe;Ss315 (col.) for the sintered devices.
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Figure S8. Cumulative electrical resistivity, R, for the devices composed of Ni, Nip.9Coo.1Sb, and

Cuz6Ti2SbaGe;S31.5 (col.) before and after annealing at 573 K, 623 K, and 673 K.
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Figure S9. Secondary electron images near the interface between Nip9C00.1Sb and CuzsTi>SbaGesS31s

(col.) before and after annealing at 573 K, 623 K, and 673 K.



Figure S10. The model used for the finite-element method (FEM) simulation of the CusTi;SbsGeSs31
colusite single leg thermoelectric power generation.[2] The grey surfaces are thermally and
electrically insulating. Current density J and heat flux g exist perpendicular to the blue surfaces at the
hot and cold ends. The voltage V is the electrical potential difference between the hot and cold side
terminals with ground voltage Vo (V = 0) on the hot side. The temperatures on the cold side T¢ ~ 300
K and the hot side Ty = 368-670 K were kept constant while the current density J was varied to obtain
the power generation characteristics.

[2] X. K. Hu, A. Yamamoto, M. Ohta, H. Nishiate; Measurement and simulation of thermoelectric

efficiency for single leg, Rev. Sci. Instrum. 86, 045103 (2015).

Table S3. Material’s properties (Seebeck coefficient S, electrical conductivity o, and total thermal
conductivity k) and dimensions used for the finite-element method simulation of the Cu,6Ti,Sb1GeSs1

colusite single leg thermoelectric power generation.

Dimensions mm 3.177x2.604x5.000

S(M VK1 8.62448x10716 T* - 1.15822x107*2 T3 + 4.12827x107° T2 + 2.40000x1077 T + 1.13793x107°
o(T) Sm? -1.44243x107 T* + 2.88575x1073 T — 1.95244 T2 + 3.35079x102 T + 1.14890x10°

K(T) WK?m?  -4.28138x1072 T* +5.07157 x 107° T3 + 4.95317x1077 T2 - 3.40354x1073 T + 2.27943

Table S4. Finite-element method (FEM) simulation of the thermoelectric power generation of a
Cuy6Ti2Sb4GeSs3; colusite single leg at hot side temperature Ty and cold side temperature T¢; open-
circuit voltage Voc and internal resistance Rin; output power P and heat released to the cold side Qout

under the condition achieving maximum conversion efficiency Nmax.

Tu/ K Tc/ K Voc / mV Rin / mQ P/ mwW Qout /MW Nmax/ %
368.8 295.3 7.69 6.12 2.40 182 1.30
466.5 296.7 19.8 6.94 14.1 404 3.38
566.5 300.2 34.2 8.07 36.4 607 5.65

670 300 51.8 9.59 71.7 817 8.08
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Figure S11. (a) Voltage-current (V-/) plot, (b) output power P, (c) open circuit voltage, Vo, (d)
internal resistance, Ri, and (e) output power, Pmax, and (f) heat released into the low-
temperature heat bath through the sample, Qou, under the condition achieving maximum
conversion efficiency Nmax (Fig. 5e) for the device composed of Ni, NipsC00.1Sb, and Cu6Ti,SbsGe;S31.5
(see Fig. S6). Solid lines in (a, b) and closed squares in (c—f) are the calculated data based on the

thermoelectric properties of CuzsTi;SbaGesSs1.



